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OPTICAL COMPUTING BASED ON NEURONAL MODELS

1.  INTRODUCTION

-~ The ultimate goal of the research work carried out under this grant is
understanding the computational algorithms used by the nervous system and
development of systems that emulate, match, or surpass in their performance
the computational power of biclogical brain. Tasks such as seeing, hearing,
touch, walking, and cognition are far too complex for existing sequential
digital computers. Therefore new architectures, hardware, and algorithms
modeled after neural circuits must be considerea in order to deal with real-
world problems.

Neural net models and their analogs represent a new approach to
collective signal processing that is robust, fault tolerant and can be
extremely fast. These properties stem directly from the massive
interconnectivity of neurons (the logic elements) in the brain and their
ability to perform many-to-cne mappings with varied degree of nonlinearity
and to store information as weights of the links between them, i.e., their
synaptic interconnections, in a distributed non-localized manner. As a
result signal processing tasks such as nearest neighbor searches in
associative memory can be performed in time durations equal to a 2w time
constants of the decision making elements, Lne neurons, of the net. We note
that the switching time-constant of a biological neuron is of the order of a
few milliseconds. Artificial neurons (electronic or opto-electronic
decision making elements) can ke made tC bHe a tiousand £o 2 millicr “imes
faster. Artificial neural nets can therefore be expected to function for
example as content addressable associative memory or to perform comrplex

computational tasks such as combinatorial optimization and minimization
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which are encountered in self-organization and learning (self programming),
computational vision, imaging, inverse scattering, super-resolution and
automated recognition from partial, (sketchy) information, extremely fast in
a time scale that exceeds by far the capability of even the most powerful
present day serial computer. For Lhese reasons electronic and opto-
electronic analogs and implementations of neural nets are attracting today
considerable attention. The optics in the opto-electronic implementations
provide the needed parallelism and massive interccnnectivity while the
decision making elements are realized electronically heralding an ultimate
marriage of VLSI and optics. It should be kept in mind however that
research and advances in optical bistability devices (OBDs) and nonlinear
optics and optical materials, promise to furnish also all-optical decision
making elements and eventually neural nets in which both the
interconnections and decision making are performed optically with the
electronics being used only for control and assessment of the state of the
net. The combination of optics and electronics and the potential for
exploiting advances in opto-electronic components and materials (for
example; nonvolatile spatial light modulators for realizing programmable
synaptic or interconnectivity masks (plasticity) and OBDs for decision
making) promise alsc that embodiments of neural nets can be compact and nave
low power consumption. Such embodiments, being primarily .analog, are
leading Lo rekindling of interest in analog computation whose development
has been curtailed by the explosive progress in digital computing.

In associative memory applications, the strength of interconnection
between the "neurons" of the net is determined by the entities one wishes to
store in the net. Usually these entities need tc be in the form of

uncorrelated binary representations of the original data. Specific storage



"recipes" based on a Hebbian model of learning (ocutzar-product storage
algorithm), or variations thereof, are employed then to first calculate the
connectivity matrix then set the weights of links between neurons
accordingly. In this sense the memory is explicitly programmed i.e. taught
what it should know and should be cognizant of. This mode of programming a
net is sometimes called hard learning. What is most intriguing however, is
that neural nets can also be made to be self-organizing and learning :.e.,
to become self-programming (soft learning) through a process of automated
connectivity weight modification driven by the entities presented to them
for learning. This alleviates one of the major constraints of neural nets:
programming complexity, and makes them a much more attractive and powerful
tocl for neuromorphic signal and knowledge processing. The combination of
neural nets, Boltzmann machines, and simulated annealing concepts with high
speed opto-electronic implementations promise, as demonstrated by research
carried out under this grant ([1]-{2] and this report), to produce high-
speed artificial neural net processors with stochastic rules for decision
making and state update that can form their own internal representations
(connectivity weights) of outside world data they are presented with,
regardless whether the data is correlated or not, in a manner very 2analocgous
to the way the brain is believed to form its own symbolic representation of
reality. This is an exciting prospect and has far reaching implications for
smart sensing and recognition, and artificial intelligence as a whole. The
use of noise in stochastic learning can shed light on the way nature has
managed to turn noise present in biological neural nets to work to its
advantage and makes stochastic learning, as opposed to deterministic
learning schemes more biologically plausible. Such learning 1is

probabilistic in nature aimed at capturing the probability density function




of the environmental representation the net is exposed to. Probabilistic
learning is therefore naturally compatible with real envircnmental
representations that are fuzzy in nature. Exploratory work at the
University of Pennsylvania is showing that optics can play an important role
in the implementation and speeding up of adaptive learning algorithm, such
as the simulated annealing and the error back-propagation algorithms, in
such self-organizing nets and can lead to their use in automated robust
recognition of entities the nets have had a chance to learn earlier either
with or without the aid of a teacher (supervised or unsupervised learning)
by repeated exposure to them when the net is in its learning mode. One can
envision modules of such self-teaching neural nets trained to recognize and
create symbols of certain features found in natural scenes, patterns or
other input signals. Such modules could be used collectively for higher
level processing where their output symbols are fused to form better or more
reliable interpretation or assessment of the environmental input. The
implication of this for autonomous systems are obvicus but the achievement
of such scenarios requires further concerted research.

Learning in neural nets is not rote but involves generalization, i.e.
the net can recognize an input as 1 member of a class of entities it became
familiar with earlier even though that specific input was not specifically
among those shown to it earlier. This property can be extremely useful for
accelerating teaching sessions in that one need not think of and present to
the learning net all possible associations it is supposed to recognize in
order to make it useful. This property relegates however a degree of
decision making to the net perhaps beyond what we are ordinarily accustomed
to in signal processing systems. Thorough understanding of learning

processes and how 3 network generalizes is therefore desired to alleviate



apprehensions and uncertainties stemming from the inclusion of "thinking
networks" in man made systems that share with him the decision making
process. Such understanding can be realized only through insights gained
normally by theoretical analysis and with software and hardware simulation
tools. Being highly nonlinear, neural nets {(as for example in higher
cortical areas), and their models are often difficult to analyze. Numerical
simulation of neural nets, even relatively small multilayered self-
organizing nets, are proving to be computationally too intensive and
therefore unacceptably time consuming which is hindering progress in the
field. It is for this reason that analog systems in which neural net
behavior can be modeled and studied dynamically at speeds that can be
several orders of magnitude faster than in numerical simulation are an
important component of our ongoing studies and the future research
directions stemming from it. This work is pointing towards neural nets as
nonlinear dynamical systems that are characterized by their phase space
behavior and concepts of attractors, chaos and fractal dimensions. This
will in our opinion provide an infusion of powerful concepts of
nonlinearity, collective behavior, and iterative processing into optical
processing and artificial neurodynamical systems.

Another intriguing promise of neural nets is their ability to store and
retrieve information in a sequential or cyclic manner where a chain of
entities can be stored and recalled in a hetero-associative sequential or
cyclic fashion. This can provide a crude but simple way for forming,
shaping, and controlling the limit cycle (trajectory) of a neural net in its
phase-space. This property together with that of generalization, mentioned
earlier, are important for work in pattern recognition in general and are

being intensively studied at ocur Electro-Optics and Microwave Optics
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Laboratory in the context of distorticnless radar target recogniticn as
described in earlier work (see references listed in this report and in [1]

and [2]. The results of this work are expected to be general and would be

*
beneficial to active and passive machine vision .

Being highly nonlinear neural nets possess complex, rich phase-space
behavior that exhibits or is in principle capable of exhibiting the

following general features of nonlinear systems:

o Fixed points or limit points in phase-space that act as attractors
with prescribed basins ¢f attraction that are formed explicitliy
(hard learning) or implicitly (soft learning) by Hebbian based
ruies.

o] Fixed limit cycles or closed trajectories in phase~space that act

also as attractors.

(o]

Fixed open trajectories that act as attractors.

o) Modification and control of fixed limit points, limit cycles and
open trajectories by external and/or contextual input or by
adaptive thresholding.

s Bifurcation and chaotic behavior.

Neuromorphic signal and knowledge processing systems (whether optical,
electronic, or opto-electronic) must be able to draw upon and make use of
these features to achieve powerful signal processing functions. Such

functions include:

*

Machines that utilize active illumination to discern and perceive the
environment or utilize natural scene illumination or emission for the same
purpose.




0 Nearest neighbor searches
o] Combinatorial optimization by minimization of cost-runctions
o) Solution of ill-posed problems of the kind encountered in

vision, remote sensing, and inverse scattering

o] Feature extraction: self-organization, learning and self-
programing

o] Generalization

o Sequential and cyclic retention and recall

o] Higher crder or more complex computations in phase-space. (e.g.

spoken language processing)

All the above are issues that provide motivaticn %o our neurzl net and
opto-electronic implementation research, both zurrent and future.

The ultimatzs realization of neuromcrpnic systems for wide use in signal
processing applicaticns s not a trivial task. It requires vigorous
researnch and develcpment in three primary areas: neuroscience - t0 increase
cur understanding of the anatomical, physiological, and biccheminal
properties, and function of neural tissue {(neurzl netz) in order to identify
those attributes that might help in their modeling and that can be usefully
applied in artificial systems; the study of opto-electronic architectures
and implementations, and vigorous device development based on advances in
linear and nonlinear optical materials for efficient implementation of
programmable synaptic weights (artificial plasticity) and sensitive optical
decision making elements capable of performing at lower threshold then
present day devices. Thus synergisim between a triad of research
activities: neuroscience; mathematical modeling and analysis coupled with

architectures, implementations, and programming; and materiual research is
_7_
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called for. OQur future research in neurodynamics will continue to te

influenced by developments in these fields.

2. RESEARCH ACCOMPLISHMENTS

The first parts of our research program under this grant were concernec
with the modeling, simulation, and implementation of fully interconnectad
neural networks and were reported upon in detail in two previcus annual
reports [1),02). Work with fully interconnected nets and specifically =
comparison of inner prcduct versus cuter product schemes for associative
storage and recall (see Appendix IIIl) revealed to us that one of “he most
distinctive precperty of neural nets that is worth considering in our
researcn efforts is self-organization and learning. 3Self-organization
(adaptivity) and learning seems to be what sets neural net processing apart
from other approaches ts signal processing. Hence our =fforts have since
been more concerned with learning ana self-programmability in neural nets.
Learning recuires layered nets in which one can clearly distinguish Input,
output, and hidden (buffer) groups of neurons with proscribed communication
patternc among them. Such nets are hence non-fully interconnected. 7o this
end we have devised a scneme for partitioning =xisting opto-electronia
vector-matrix multiplier architectures into any niumber of desired layers
(see Appendices II and III). Learning requires plasticity, i.e. modifiable

weights of connections between neurons. In our work such plasticity is

achieved primarily through the use of programmable nonvolatile spatial light

¥
modulateors (SLMs) such as the magneto-optic SLM (MOSLM). We have devised a

— .
Nonvolatile ferroelectric liquid crystal SLM can also be used. These
however are not available commercially yet.
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new scheme for driving a commercially available 48x48 element MOSLM =t 2
frame refresh time of 1 msec demonstrating thereby that synaptic
modificaticn in a 24 binary neuron net constructed around this MOSLM can
take place if desired in a time period as short as 1 msec.

From the outset we have concentrated our effort cn stochastic rather
than deterministic learning for several reasons. Stochastic or
probabilistic learning is more compatible with the uncertainty of most
environments in which learning neural nets are expected to operate. In
addition operation and study of stochastic neural nets could shed some light
on the way nature has harnessed noise present in biological neural nets to
work to its advantage. Learning in stochastic neural nets involves finding
the global minimum of an energy function asscciated with the network by
introducing uncertainty in the state update rule of neurons in the net.
Conventionally this is done by a simulated annealing algorithm in a context
of a Boltzmann macnine that was devised to be carried out on a serial
computer and {3 frequently used in the sclution of combinatorial
optimization problems. Software implementation of the process however is
time consuming. For example finding the optimal wiring layout for a typical
IC chip might take 24 hours on mainframe computer. We have cevelcoped
ther=fore a method for accelerating “he annealing time in an opto-electronic
stechastic neural net that can be several orders of magnitude faster than
serial digital methods. As a result, stochastic learning in such nets can
be speeded-up by the same factor. The method involves the use of noisy
thresheolding of the neurons 1. the net which introduces controlled shaking
of the energy landscape of the net and prevents the net from getting trapped
in a state of local energy minimum improving thereby its chances of finding

the ground state (global minimum) or one close to it. By intrecducing the
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noise in the net in bursts of decaying magnitude the chances of converging
onto a low-lying energy state and staying in it are enhanced considerably.
(Such controlled annealing profiles or annealing schedules are also useful
in stochastic learning with binary weight to be described later.) The
results of numerical and experimental simulations (see Appendix V) show that
the noisy thresholding scheme is quite effective. We used the noisy
prototype thresholding scheme in a network of 16 neurons with random bipolar
binary weights implemented in opto-electronic hardware. The results show
that the net can find the ground state in 35t where 1 is the time constant
of the neurons in the net. This means that for a net with neurons of 1 =
Tusec response time the net can be annealed in 35 usec and this is
independent of the number of neurcns in the net as noise in our scheme 13
injected optically onto all neurons simultaneously by projecting a pcrtion
of the snow pattern appearing on an open channel T.V. receiver onto the
photodetector array segment of the opto-electronic neural net.

The pixel transmittance of the MOSLM mentioned earlier is binary. Most
known learning algoritnms require small incremental changes in the
connection strengths between neurons of the net. This means multivalued
weights are necessary precluding the use of MOSLMs despite their highly
desirable nonvolatile nature (storage capability). Small incremental
changes in the weights is a requisite for convergence of the learning
algorithm. To overcome this limitation we have devised a method for
stochastic learning with binary weights. The method combines multiple
time-constant annealing bursts and dead-zone limiting as detailed in
Appendix VI.

Fast annealing by noisy thresholding and stochastic learning with

binary weights are significant developments that enabled successful

~10~
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operation recently in our work of the first bimodal stochastic optical
learning machine as detailed (see Appendix VI). The machine consists of 24
unipelar binary neurons, 24x24 bipolar binary connectivity mask implemented in
a U8xU8 computer controlled MOSLM, and LED and photodetector arrays with
associated thresholding amplifiers and LED drivers for the neurons themselves.
Preliminary results of the learning capabilities show that the net can learn a
set of 3 asscciations in a time interval ranging between 10 minutes to 60
minutes with relatively slow (60 msec) neurons. Preliminary results are shown
in Fig. 1. Slow neurons were chosen deliberately to permit visual observation
of the evolving state vector of the net as represented by the LED array of the

net during the various stages of learning.

3.  CONCLUSIONS

Research effort under this grant has led to the demonstration of the
first stochastic opto-electronic lea:ning machine employing fast annealing by
noisy thresholding and stochastic learning with binary weights. The prototype
machine of 24 neurons now operational in our laboratory provides a valuable
vehicle for studying the dynamics of stochastic neural nets. As such, the net
can be viewed as an opto-electronic analog computer that can perform iterative
mappings, do stochastic searches of the energy landscape, self-organize and
learn, and act as associative memory after learning is completed. We will
continue our studies of this and larger versions of the machine (a subject for
renewal proposal under preparation) in order to ga.n better understanding of
the hehavior of such machines as artificial neurodynamical systems and explore
a host of intriguing applications involving solution of combinatorial
optimization problems of the kind encountered in vision, remote sensing and

inverse scattering.
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5. PUBLICATIONS AND OTHER ACTIVITIES

Following is a list of journal and conference proceeding publications
describing research carried out under this grant:

1. D. Psaltis and N. Farhat, "A new approach to optical information
processing based on the Hopfield Model,™ in Digest of the Thirteenth
Congress of the Internaticnal Commission on Optics, (IC0-13),
Sapporo, Japan (198%), p. 24. (pre-grant publicaticn).

2. D. Psaltis and N. Farhat, "Optical information processing based on
an associative-memory model of neural nets with thresholding and

) feedback,"” Opt. Lett., 10, 98 (1985).
1 3. N.H. Farhat and D. Psaltis, A. Prata, and E. Paek, "Optical

{ implementation of the Hopfield Model," Appl. Opt., 24, 1469 (19857,
pp. 1469-1475.

1 ' N.H. Farhat and D. Psaltis, "Architectures for optical
implementation of 2-D content addressable memories," in Technical
Digest, Optical Society of America Annual Meeting (Optical Society
} of America, Wasnington, DC, 1985), paper WT3.

l 5. K.S. Lee and N.H. Farhat, "Content addressable memory with smooth
transition and adaptive thresholding," in Technical Digest, Optical
Society of America Annual Meeting (Optical Society of America,
Washington, DC, 1985), paper WJ35.

i 6. N. Farhat, S. Miyahara and X.S. Lee, "Optical implementation of 2-D
neural nets and their application in recognition of radar targets,"
] in Neural Networks for Computing, J.S. Denker, Ed. (American
* Institute of Physics, New York), pp. 146-152.

7. N. Farhat and D. Psaltis, "Optical implementation of associative
memory based on models of neural networks," in Optical Signal
Processing, J.L. Horner, Ed. (Academic, New York, 1987), pp. 129-
102.

8. N.H. Farhat, "Architectures for opto-electronic analogs of self-
organizing neural networks," Opt. Lett. 12, 448 (1987), pp. 448-450.

9. N.H. Farhat and B. Bai, "Phased array antenna pattern synthesis by
gimulated annealing," Proc. IEEE (Letters), 75 June 1987, p. 842-

by, -
10. N.H. Farhat, "Opto-electronic analogs of self-programming neural

nets: architectures and methodologies for implementing stochastic
learning by simulated annealing," App. Optics, 26, Dec. 1987, pp.
5093-5103.

11. N.H. Farhat and Z.Y. Shae, "Architectures and methodologies for
self-organization and stochastic learning in opto-electronic analogs
of neural nets," Proc. of the IEEE First Annual International
Q%nference on Neural Networks, June 1987, (IEEE Cat. No. 87THO191-
7).
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12. N.H. Farhat and Z.Y. Shae, "Bimodal stochastic optical learning
machine,"” (submitted)(see preprint in Appendix VI).

13. N.H. Farnat and Z2.Y. Shae, "Methods for accelerating the frame-rate
of magreto-optic spatial light modulators," (submitted).

Degrees Awarded:

1. S. Miyahara, "Automated radar target recognition based on models of
neural nets,” Univ. of Pennsylvania, Ph.D. Dissertation, 1987.

2. K.S. Lee, "A new apprcach to optical information processing based on
neural netwoerks models with application to object recognition,”
Univ. of Pennsylvania, Ph.D. Dissertation, 1987.

Patent Disclosure:

Super-resclution - Patent disclosure filed April 9, 1987 on behalf of the
University of Pennsylvania by University Patent Inc., 1465 Post Road
East, P.0. Box 901, Westport, CT. 06881,

Invited Talks and Presentations:

In addition to those listed in earlier annual reports (see refs {1] and
(2]), the following invited talks were presented by N. Farhat in the period
Nov. 1, 1987 to May 30, 1988.

1. "Collective nonlinear optical processing based on models of neural
networks," Battelle Memorial Institute, Columbus Divisicn, Nov. 27,
1987!

2. Super-~resolved recognition of radar signal targets based on models

of neural networks," IEEE Philadelphia- Section, February 16, 1988.

3. Self-organization and learning in neural net analogs," Philadelphia
IEEE Circuits and Systems Chapter, March 2, 19838.

4, Sﬁochastic neural nets,” Long Island 1EEE Computer Society, March
24, 1988.

5. "Ségchastic optical learning machines," Columbia University, May 4,
1988.
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Workshop Participation:

N. Farhat participated in the following workshops:

NATO Advanced Study Institute, "Electromagnetic Modeling and Measurements

for Analysis and Synthesis Problems," Il Ciocco, Tuscany, Italy, Aug. 10-
21, 1987.

JPL Workshop on Neural Network Devices and Applications, Jet Propulsion
Laboratory, Pasadena, Feb. 18-19, 1987.

DARPA/Lincoln Lab Review Panels.
Optical Neural Nets, Caltech, Pasadena, Dec. 14, 1987
Applications, Bedford, MA., Jan. 22, 1988

NSF/ONR "Workshop on Hardware Implementation of Neuron Nets and
Synapses," San Diego, CA., Jan. 13-15, 1988.

"ARO Workshop on Submillimeter Wave Imaging," Breckenridge, Cclo.,
February 2-4, 1988.

"Neural Networks for Computing Conference," Snowbird, Utah, April 1988.
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6. APPENDICES

I. Optical Implementation of Associative Memory
Based on Models of Neural Networks

. II. Architectures for Optoelectronic Analogs of
Self-Organizing Neural Networks

‘ III. Optoelectronic Analogs of Self-Programming Neural
| Jdets: Architecture and Methodologies for Implementing
Fast Stochastic Learning by Simulated Annealing

Iv. Phased-Array Antenna Pattern Synthesis by
Simulated Annealing

V. Architectures and Methodologies for Self-Organization
and Stochastic Learning in Opto-Electronic Analogs
of Neural Nets

vI. Biomodal Stochastic Optical Learning Machine
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Fig. 3. Architectures for optical implementation of 4 content-addressabie memory based on models of neural nets. (a+ Matrix vector multiplier
incorporating nonhinear electronic feedback, (b1 optoelectronic scheme for reahizing tinary bipolur mask transmittance 1n incoherent hght. (¢
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programmabie connectivity matrix.




T senewe o paddipy nag) pae wouesp I P IR TRIT) IRNTITIYN PO dangy cp g oy Y1 48 ,.w__ uj .:?;:.fﬁ_zu._ .Lx pue vy n..a_‘— UL UMOYS IR SIQUIANSE
1 Avne (g -sengns om) agn pue Keage (0] ndun agy Jo Smaia (rUotg py
IS T NS U 0 S A T SO N DO T S0 SO0 TN T B0 S CHN U S30 BN S TN 230 U S BN B SO0 O B A w Apeuopid umoys se oysew andeeds sigeunueadosd e se 1§ dnnjoa
) LE3 N S S A S U N U SR U R N O SR N R G SN S S GO G S S GO CHR CHR 3N N S -wou dunrukp pajjonuod-gamduod v dumkopdwa £q dgd v ygons oy pappe
L L aq ued Apynessaa apquiapisuo )y 4 8y w paidap dasuod digo Lo
__. " ” A_ M “ M __ __- __ ” _. "H __- ” “- —_- __ " “ “ ._ ._- __ ”. ._' “ ,. ” __ “ “ sanrosse peduwod ) w ynsas pur sondo ndur agy jo asodsip pinom
| S O S S A R G SO G S S S SO S S SO G S N G S SN SO A N N S S AN O OO Yym S A jo peasur sadmos aup funmua gy jo Leoe ue Jukn
L L L L L L o Aq Kpepuns paaanygar ag ued wonedyidus 1agung ‘wasks pedwiod asow
s ”- " ”- “ " ”- “. ﬂ " " _— “- “ “- “. " ” ““ “ “- “- “H “- ”H "- “” “- “- “- " ” “ pur sapduns v uy Funnsas ‘jo pasodsip are eg Jiq jo ped andino 2 w
LI T S L S G U R G S S SO S S SR S L R SO SN T S S S S SR S OO B £ pannbas sando nydsowear oY) uoyse i u| KRR (14 1JUUEYININW Y} jo
! L L L B L e R S T L L SIUAWANA PANUALIO AJIRIIAA Y1 Jo 20 Kg (pavsdau Kjirneds) papagod sem
“. ” “ “ _. " " ” " ” “- ._- " " "- ~. ” “ “ " “ " “ "- " “ " ” “ " ” " ysewgns A1owau B Jo mosgns yaed woly fuidiowa iygdry sysew ays suiede
ﬁ L 30 SN S L ERN S CHN SN S SO S S SN O CHR A S S R SR S C N S R G O CHR S SN EO | 12151321 Uur paoed 213M YIIYM UONDIAIIP JEIIIAA AY) W) sArase (I YD JO 718
| N R L L B L L L WA 2yl 0) Jenba A[IDRX3 apRW SEM SYSEWIYNS ATOWAW 3Y) |0 SMOI4nY
“. ” ” —_ __ __ ” _~ " _~ “ " " __ “ .“ M. “ “ " ” “- “ “- “. __ “ “ “. _— “ " Yy 0 a21s YL Y L] UL BMOYS ST CSUUR [Rondo [RINUAPE om) ut sysewgne
| S S S GO S SN S SR O G GO GO T S G GO CAN B GO SR SRR SN S SN SN N N SR N OO GO Junygnsas ayy asn o) pur ¢ By W VMOYS SESIAPRY OM) OJUl YSPW ay)
et -l -l bl et WIJS 01 TUBUIAUOD PUROJ SEM I YSEIE AI0WIW 3Y) JAAC Paseaws KjWiopun
(S S S SO S A C A CO S O A U O T U U A 2N R E OO O B O O U I S st Aer (1) Indur ag) jo a8ew 3G 1RY) 2NSUL O MOIGRS JudR(pE Y
[ EI0 E S E £ T R T S L U U T U CO SN G S U S R SN SR SR S R L GO S R O : : X :

[C38 CH 3 U S S0 T OO BN S0 S N O3 EUN U TU PN SN S8 S S NN SO0 S PO S PN SO S N S & us spaxtd Juaaedsung) 0) sangea AANRAIU Y)Y PUR YSEW YD JO MOIGNS U0 Uy
| S CRR 3 CH CR N N S S0 £ S0 TN S S0 GO S0 GO SN SR WD S0 CON 20 SR SN N U O N SR GO spaad wasedsuen 01 ' jo mos uan@ Kue ul sanpea aamsod ayy Sudisse
R L L L L L L L LU L Aq xmew "7 ag) woiy pajesauad-andwoed sex spaxid asenbs g x 7y jo
. ” ” “ ” “ ” ” ”- "- “- ”- ”- ” ”H " ”- ” ” ” ” ” ” ” ﬂ ” “- "- ” ” ” _. Louasedsurgy siydresdojoyd Aivuig v "9y SESIONAA 33541 AY) UAIM ) DdURISIP
te-ttr -1t -1 -0 -1 LT OTT T Funnwej veaw 2y p A urumoys ase xunew Lowadw Fuunsas ayi pue
R L L L L L L L A0 YIRS WO SPOURISIP U] NAY) UISOYD SPIOM IO SI01D3A 231
.__. —— —— “ ” _. __ __ __ __- —_- __ u.. ” MH ”. ” __ —_ ” ” ” ” __. ” ” ” ” “_- .— __ ” [ s10paa s Aoy y ~ Jy 20) paredasd sem ysew 'y Kreunq aejodiy
LSS S S NS £ U T T U T S SN S SN SN SR S SN S SR S SR A GO O TR OO S S o V ody 31 j0 2wayds Ayl o) 3DURPIOIIE Ul Y3 WAIIYodur ul dueu
L L R -sue) ysew Krowaw sejodiq v wawagduir 0 papaau 21w S SP SIWAWAS
Ud Auvwr se a0t SUdWDE 7g Jo Junsisuod yora ‘skene () womnps
1xp1iem L1owaw paddyiy [PUUEININW OM) PUR SO TE JO KRR UR 1M PADTUISUOD SEM "MO13( uaad
AR POIGM JO SPRIAP WAISAS Y] SueInau gy = N Jo pomiau v Arando

ARINUIS 0] PAINMNSHOD sem ey 31 Ul pajuasard awayds ay) jo uoneuea
WY, A8us 1 g paunogiad yoieas Joqudiau-isaseau ayl uny) suonry
-ndwoa 1ap10-134 3G W0 pad 01 PRIV 3G AR IRY) SIITINNS NV )
ajduns 0y peap ued sigp Ave (11 /(3 A 20r1dar 03 pasn 3q urd {($86]
S0 2 WA HIRGT TP 12 S4qi)) saydiims (rando aramuou jo shrase f({gal
RPRIOG } Yargpady [eusajut girw saaygidwe ydy jeondo seaunion jo sknuw
1pion 03 pion woij 2doueisip Aujmmey WY IApIsEod am uaym Junsaiaus Kpenomed sioyoegpaay eand( Ssery
10 Swaup pue ‘voneoydwe ‘@mpjoysang 105 SH (Y WIRIG0d 05 apew
oo 0T o0 0T P OT OO ST T TV TT T L0011 01 ¢ €pioy ag OSR URD Ryl ANPHNNS YHoUoW 10 pUgLy Pedwod 2138ums v ug sAene
plotiototl U1 T OO0 T 01 &7 00T10000O0O0O0TL T 0 : 2piw A1 pun (14 2 Junnquiod g paadnyoe ag ued Sy Rougpad) jeando
; plPOOO DT OTTHEOTT OOl oloo00sl1i: thm Ag w aovpdar pue saygdo e Junm MU0 Jo asodsip 01 3jgriaaad pur
:spaom paioig apgsssod st Fuim D000 A PasAYoe siargpaa) g Ay u umoys
(R4 AHOW I AALTVIDOSSY 1O NOFTEVEN TN TIINT VOO« SHE VS (0T LN B GNY EVHEVE B HHVN OFt




waty priorad {4y wesdvp pnae Siuosoapaoidg

(V) VHUBM J(yess2ippe juajuon o _::_..:..::.:__:._ _..:.»_: 0y —:u:..,..u:...-.{, ‘g .8-.—

q)

SJI11d0 ONIHVINS
ATIVINOZIHOH ONV
ONISND04 ATIVIILHIA

WSYIN iy

_ \ <
AVHHY _» _ ~
TRETE RN

Z

G
v

ONtQTOHS IYHL
8 NOLLVIIHIIdWY
JINOH12313

[§4! AHOWAIN JALIVEDYOSSY 1O NOTEVEN N RN SV O d60

YL AR A4 VO SRAOYM Cf QU] JO UNOD IS YL U Umoys seosdags
NN W APRDUI PASRADL STy PUR J0DIA Az o) udaIMIag AueINp
Fuinwiegg ayy tos Jutop up ndp Yy Ay wosg Funaes sudip s jo A o1 dn
T o sams ag) (Fuigonms) 3unde £jaaissanans £q g wosg pameigo
1AM ASAYL NG PIOM ISIY AYD O SUOISIA UAPR|-I0MIA 2I3M WIANAS 2
FUISIIIAXI U1 PAsN SJ01DA FNZIRNIN JO UNLISHEDY | | SIQR L Ul paIRjnge) e
w2asAs ayy o oueunopiad ag Juneniead pue JuiSIaXa JO SIS ayy
‘uoneuAAdwy aempIny 2IRJIOR| 01 UISOYD SEM W) suodsay
MO] SNyl pue Apnis SIYy Ul ansey ue Jou sem uolriado jo paadg sw gy
woge sem saaygipdwn ayg) Jo Jo-|jor gp-g Ayl AQ pPauiuldap se spauei
FIRGPAIJ DIUODID Y Jo dun) suodsas ay pajou $1xoq Aegdsip ayi uo
Aaepawws jsowge duunadde ‘v ) ayi jo aeis grug oy Funuasasdas jondas
INAINO ) pur 24090 PAQUIDSIP S AV ) Y)Y AZIRINIUL O] PASH UYL S1I0LIA
NP PAIOU S1 AJOWAW Y)Y UL PAIOIS SI0IIIA LIS [RUIWOU Y] JO YO wol)
aourisip unmepy sp pur pasodwod 11013 AU Uy JOIARYIYG SHINWIS
SNSIIA ISUOASII SIEAPNIS 0] WIISAS aY) Jo FuUISIDIIXD TUAHUIAUOD 30} sapiaosd
ampasoad sy Apsnosumpnuns xoq Avjdsip ayi pue Keue (1311 ndur sy
uo pakeidsip ‘suonrian maj vaaye sseadde 9ndino ays ‘wasks ayy jo e
{euy ay . c1opaa Swizipeinut ayr se 10103 pasodwion ayr yum wands ayp
2)1r33do o) umon uayl st Yonms a|duis v -Kysnoauriinuns xoq (131 ndut o
uo pure xoq Fuisodwos ay) uo pakeidsip saivadde 1 paroajas st sopay induy
ue U ey A4 u umoys wasks ayl Jo Aeae (5§ indul ay) vo sieadde
1eY) J01aa 36 prom ndur Areaiq ayy Aegdsip pue asodwiod 0} 1 xoy S1y)
Jo wonduny ayy Aeae (437 ndut ay) o1 [ajeard Ul pa1d2UU0AIE SHUAWN|
asoym ppued Aepdsip (1511 WAWAJ2-2¢ © pur SaYIuUmMs z¢ o Judwadurue
ue suIuo siyg 6 iy ur umoys st xoq Aepdsip pue duisodwod v jo mana
jeuod v (g 814 225) paiunow 3Ie SAQUIISSE ARLIE (J4-SPUIQNS OM) )
pue Leiie (1101 A4 4oyga Ho saxoq ayl i pue eg 3y ur umoys xoy dwpgo
-YSaIy) pue noNEIYPIAUIR D013 AY) UL PIVILIUOD 31T SPAUURYD Yorgpa)
Pmed ze sy ut ('2 *ssaanp (1377 ‘stoimaedwios Suipjoysayy ‘siaijduwr)
SHNDID UOIDINA 1Y 3 PUIYIq Paenlis Kuie (Jd UODIIS Ayl |PaAdl )
PAAOWAL YSEUIGNS AY) YIIM UMOYS SI K|quiasse Aruie (j4-)SPwqns AJowiaw

ysrw Agowmaw v Jo saaey omy ¢ 9y

SEE VS 181 1N I NV VNIV 11T 1IIHVN P o |

e A




'
“a

. R '
mdut aye pazindorar V) ) el pue | Baamag paduns g wolj 101aa

durzipeia oy o durisip Auiwe ) M) wayM ey 3as am e 0 | aye |

PP M UONRS SepUuR Ay Ay O ¢ uoy b umons se g se Apoanod

10§ PUR T SUWINIOD Ul pauasasd 21e Ay panieigo ospr atam | g pu
4SO SHOISIAA UAPRE-30413 I V) A Fuizgenan o sigasar aejung
JOIA (EAFLO Ay JO u0ISIAA

PASIAI-ISENUOD B SE PIMIA 3G UED 101128 ».__.._—_v:..u_»——::u Y. CSH0)IIA

SMPYUIINSE AR
10Dpooyd; Y rogns Gowag (q) pur AR (] Indur j0 smn [riom g (v) g 8y

AHOWAWN IAHIVIDOSSY 10O NOHIVIN N ELIND IV OIIdoO (¢

Mues ay) o jas Ao oY) Ag paio) gy oF jeduIPE S8 1018
1O 1A% rwegy pausoy xinewe “poag e () by fun umoys ag ues u
3S0EIag PARAAX SESIYY g o 0RRIdWod ayl se S101034 Auizyemm ay)
paynuapy vonepnus (eI ) pur wAsAs rondo ayl yog 7o umsp
Fuinnuegy © puokag V. ) YN JO SI01IA RIS [RUILOU 3Y) ot 21am eyl
SI0123A 13438 FUOWE PANPISO AWOIINO Y UIYM uotRiRws (erdip agi i
(SO Aq paieudisap) suonejpaso jo asureseadde ayr 10§ 1dadxa spgrardwon
ase adueisip Junuoep] jo aques saql w qonegnuas (eRdip Funsas ay pur
V. Y Jo 3duewsopad ayl ey 310N PP 0) WV .) Y1 Jo) yndgjp
10w 15 Juiyewr enba AYANos $) S10103A PAJ0LS Y JO AUR WOLY SI01AA
Suizigeinm a1 Jo dumsip dunuuiegy agy 28ues sy ug indul gy se g
APSOW S101034 RIS JNPNO L|SHOIVOLIA SIPNUIPL PUR PASAJUOD STINY ) Y)
‘T7 puR 71 UaaMIaG FUIA] SANIRA 01 1Y NG PAsTADUL St ausip Junuweyy
g uayay “uosuedwtod 10) | uuned wsasagiuased ur umoys Cuonenuns
IPHFIP B UM pAUIRIGe SInsas ayg) o1 [eanuapt st asundcopad sigg Juoim
e (9,6 Ly) SHRIP Sit jo 1| 01 dntuagm 43aa 10133 induy ayy 718050
0) 2031 DGE STNY.) YL 1 S7 A0 paziidonal skemre st indw
AL CEY Ueyl SS3Y SE g W03 J013A Buizijemug Ayl O dURSIP Funuwiryy
ayl waym 1 2I4RL JO 7 Wunjod ul paisi) I S10033A Juizyeniul sy Aq
padiosd sy Kzowaw 24 uaym (xoq Aejdsip pue Fuisodwod ayy) washs ayy
J0 Idino a1 1 pakepdsip S101024 IRIS-APRIIS AY) 'SRyl Lrowdw ay) jo
SIS (ruY YL 91 — ¢/N Ihoqe ‘awes ag) AIYEnos pauiewds SI01D3A RIS
OMY JAI0 A} PUE SIODIA FUIZRINUL IS3Y) {{ UIIMIAQ Adurisip Fulmwey

(maa papodxa) digd K10wan-asnenoesse uondapowo o Warwoy ¢ Bq

Oogavw ') aveby N
AVHYY g WSV DILAVNAS

INIWIII-N
~{> 7
‘dWY  THS3IHHL
MIVE0334 ¥VYINIINON
SEPIVSd I8 NI ANV EVIIIVE B TIHVYN rit
-l e, PV D Wy ey A R

-



AV IV REAY %-m——_v-:u—p_:-:.u U—_:_“mf,v—u SIPQIIA0 UM Samea

sopepns [eRdip jo spnsas e sasaygiuaied wsangep

(thy
41y
1t
1)y
[FRAY
)y
1y
(t)y
1y
LSOy
(SO
(SO
tHsm g
(I
LSOy
fae
e
o'
[ B
0y
Lty
)y
Yy
(y)y
(th
()t
£y
vy
(RN
fv)y
(t)y
i)y
ity

(v - w)
pILUIRETY
panudoray

e (RN
e tn
(e i
I I
(¢ (AN}
¢ (IR0
(g ¢ (AR
(Falrd (i
(e (AN
(g e (ARN]
(e (e
(re iy (e
()¢ iy
()¢ (ot
(YaN! (TR}
(SO 18501t
(e 19 A{¢ 1Y
[IRA] (IR INCIN
(gt (1t
(the (4
Wity 1y
(e o
(tny “an
(ra X4 (e
iz tt
(Faid mi
(T X4 (RRN
(e [RRA
[y s (RN}
e i
(e (s
e mi
e t
-NI—=- -— - Ny
JOA JOIIDIA
pazuloray panuforay

t
It
0t
6
RT
Lz
9
L4

'
cund
(UL T RET)

Sumzeimn
JO duesIp Reitanuegg

A4}

e

ANOWIWN

PONVINHO N I BNV ) IV ()

I didvi

AT VI DOSSY

1O NOHVEIN N

bV

IV bdo 2 &

'

Ul paqusap s uopad o) panunuod jau ay) tAvae () NP TH0 S
oml jo ey puapooe apndsap ey dunou yuom ospe st sjuavodwod
1PRPIAIPUL JeInDRUL AI0ANEIS yum pauno)iad aq ued voneinduiod jjesaao
Aenooe ey 1ae) a) duuayguod Kgaiay ‘Aoranaoe paacadun o) wasAs agy
Auiung auy pue duznondo ur poya apng KPanes Yyim pur sjudnoduwod
jeando pue 0N JIAYS-YI-JI0 WO NG WASAS B Ul pasaion s
asurtwopad sup ey dunou yuom sty SuBip 1oy ui 10433 v, Inoge oy dn
FUIUILIUOD SIOIA VIS JRUHOU dY) JO SUOISIAA 31 wdlsks ) o) sindus
YD uAYM SIS JOQUTIAU-ISAINIU INYSSADIRS 1DINPUOD O] YR S1WAINAS
a1 Aperauany (Zret ‘pydopp) ams aigms v o) aduafiaauod apioad o
pannbai spey) FUYoums SROUOIYIUASE AY) JO 201 YD JOJ SANNISYNS Jey)
wstuegaaw vonexe(as v apiaosd waishs eondo ayp Jo URISU0d 3w Ay
S pue vondUN) sy IRauou Yroows ay) sueendwod jendip wm
Fuipjoysang dseys sy yum pareduios siagidwe 2u04). 313 ay) Jo votdun)
1ajsuesi seauguou ay Aq paunopad Fuploysasyl groows gl Jo asneay
washs ayy w passarddns aq 01 PaadIag e YOIYm ‘SUONRJIISO JO IDUISYE
A 1PISHOD am J1 Aeanoae atow sdeysad pue suouripuns pendip oy
se A[eandoe se unpaom st Y, ) pasawagdun £jjeando ay) SuoNralasqo
(P12A28 Mjew urd auo ‘§ age] w pajasaxrd s)nsar ayy Jukpnis uy
g o Amudwaiduiod agy se indut 3y sa710d0031 K1owaw oy
Aduns SIYl puokag "SI01D3A PALOIS AY) UIIMIAQ durISIp Funuweiy urdw ay)
payroidde s101034 pasoIs (|® pup 101034 FUIZIENIVE A VIAMIAG SIDURIN
Funuungy jo a3ues ) vaym uoneWws [RRFIP Y1 UL 1Y PAAIISGO Osfr
Sy a01ARYaq A101]|155() "uonenwis rNdip jo sinsaz ay) uey) LRy Apydgs

xoq Keydsip aris-pruy pure sasodwod propy ¢ 814

&0 CeQREPEbE
0000000

eEREgLn
Q000000

aoo o
clce e
0®0 O

SEEIVSS 1) N 1) ONY VAV 11 HIHVN ot

ot



ry
(1) NCUUTT T e T i
N

BT
[PUOISUAUP-INOY ) yirm | g andut ue jo vaposd ayy ‘(6) by oy epuns

nuuew e w Cfuiwog (g L0wWdw Syl wosj paaauRg st uolewlojuy
SANNRWYNS N X N [RLOISUIWIP-0M) JO KBIIR UR 0)U] XLRW [RUOISUdUND
aney ) Jo duwomued 2y uo paseq s1oley) pawasard s1 awayods e
A xugews £I0RIBW Jurs-y§ino) e SUZHeal jo ySel Y1 YIUM pudjuod st

SYIOMIPU [RUOISUIUP-OM) JO uoneInawaldw [roNdo 10§ SANPINYIY
RUTLITIRITE]
-13403ul 3sn jry) suonepdwajdwi jeondo £g1duns pnom yosiym © g Aieurq
1ejodiun 3q ued Kinua Fupdwosd 3yl *ISed |RUOISUIWIP-3UO JY) U} SB OS}Y
Y341 W03 0) PASR UMY 238 YOIM (1 - . gT) = 10 Sumas £q soomrw
Kieurq sejodiq Ojug pawsOjSuesl 3G URD ISIAY) IS (RUCISUIWNP-IUO Y L1 SY

152301 peonoead jo 3w | g sapnud Areuiq Jejodiun jruoiSUIWIP-OM |
‘1 314 uy uaAd sy sanpasosd asay) Jo uolrIUSAIAAI dNEWIYDS v

-

(1) T T ="
w

11 1 saomew (e Suippe Aq

“tw)

130 |ZINU (PUOISUIWIP-3UO0 P 10] XINRW
AHATIIRUOD (BUOISUIUIP-OM] ¥ [0 YDIRIS PUR UOLIPIWI0] JO Uoitiuasadas jruog 1) "84

NIVESIIS BNy
BN IOHEINNL
”
L3
b e
(o
‘HOUV IS WYd
.
@ .
VSN PR - mts..
‘ ! i .‘O..."
. t
LT N . -
'Y .
w Ml ez :
e h - -~ .
- w * A ... .- ] S
u a a) ] -— ‘o
o w o vevess®
1
{
e )
Y W) . : " .— l'u *
m om) w e
L ] "
w
B} ] by 10 NOIIVINYOD 3
ovl AMOWHYE AHIVIDOSSY 10O NOBLVINGIW KINE IVILLdO €7

pauiog sy xew £0WNM JIRIDA0 Y | XUIRW [BUOISUIWIP-IN0Y B ST YdIym

(7 Na ey

Clerj " (uiy (e e

s aunpasoad siY) Jo uondudsap [PUIIO) ¥ 'SIUWD N X N
Gwiaey yora saowew rejodiq Areuiq g x N JO 13 MU €SI 3UI0MN0 ayf.
"033z 01 Jenba pnpoad-j)as ay) 3unas pue xurw 2yl o sHawaps FJururwas
AYY {17 Yim WS s jo Ingea sy dukjdnnw £g pawsoy st xiew
N XN maue a waed e jo wawdp yoed 104 1suuew Juimojjo) ay
uwy Asowdw 2ANe1OSSE Pnposd-131no ue wl pasors 2q uUrd ASIYY ‘N g
=wopue N =L N = yum e swaned Keuiq aejodiq
[RUOISUUNP-OM] JO 13S B UdAICY [ | "Bi4 Ul pazuewwns pue uoi1das Suipasasd
YL Ul PISSAOISIP AINPDINYUE JRUOISUSWIP-IUO 3Y) LY SOHIOWSN jo INOped)
pue UONRWIOY J0) AUNPDOId YL Jo UOISUIIXI 1PINP ® S) (GRE] ‘SHBSY
pue jeyte.f) poquISap st jeyl 3waYoss 3y | ‘suoIsusuLIp om) ul paduelle e
A2y j1 suoanau jo siaquinu 1a31e) SulueIuod syIomIdu Jo uoneuawajdun
1#o61do 3Y) 10) 5)S1X2 [RNUI0d Y1 pur ‘UOISIA BUIYIRW SB YINS suoneddde
Ut 1saun feanoead jO aq ARw SIBWIO) BIRP [RUCISUIWIP-OM] (IIM A
-pquedwo)) (sadeun 32) Jewso) ruoisuswip-om) uy padurise vonrwION
Fuaamas pue Jupols 10y spoyaw sLonNIf01dO UIWERXD MOu I

SIIN [enIN
[ruoIsudwg()-om | jo uonejudwajdag suoadaro)d() ‘Al

. ‘01 ‘814 ur umoys
se uediajunod (enf0(01q 1Y) Yum paynuapt aoq ues ) sissuodwod owl
PAPIAIP 3q urd uoINdL jRdYRIE ue ‘uonejuawardun swonaafaoido asoge
) u) (paarasqo sem aduewropd ur 38uryd> 3pqeadnoU ou “a) | Qe

133 3n13u MBs v jo Aojeue awosdpoid() gy By

MoyBNS
AMOLIBIHNI
NOILVD| 411y (xXrasym )
w3IAWG  HYINIINON NSYN DILJVNAS
a3 2
03 NI 04 X IvW
1n0 MON IND
HS3YHL dny lad /
\ e -\ —— - MoNONS
NOXY AQ08 113> — A x
. S3IMON3C HoLvLx3
e J\ —~——
NOHNIN ¥O 113D JANIN $1135
¥3IHI0 WON S
SISAYNAS
SEEIVSH I -H) NV IVIIEVE 1 HHYN T

vt gy - et A PRSI Rk o



Py

PuE 33 1) APIIS UGHEINUNS [E2LW0Y JNEWASAS Y "2duntiepad ur von
peIdap 2wos 01 12A3MoY ‘prap urd Sy ddueprusuen sejodiun duisn £q
paproae agq ues gz g o jsew Aowaws M panonsed agy ur durHRy
-sursy aejodig v aziear o) duiaey yum paeposse Knxajdwod pappe ayg
N A N Fuaeidas Kg 3SED 12U JRINAU (RUCISUAWIP JU0 ) 10)
o) \:._.w.:_:u 2301018 241 WOL) KPP SMOJIO) YdIYM ‘(N VIRV N = ¥
SEUOIYSEY SIYY U1 PAL0IS 2g UED ) SHNNUD [RUOISUIWIP-OM) JO 13quinu
WNLBIXEW ] PAIOIS UAIQ IARY SN N X N W Inoge uonrwsoju
YOIgm UL X LR AHATID3UUOD [RUOISUARIP-100) paquosard e y3nong suomoy
110 {B 0} IS S)E SAILIIUNUIWIOD UOINIU YIRI 3I3YM ‘INDINYIIR JA0YE
AY) UL SUOINAU N x N/ JO ARLIR [RUCISUIUIP-OM] Y] JO UOTEDAUUOIINUL DY)
sopapdwod siyp reaapojoyd () g yim pasied syl Yl ayg
(I PARIDOSSE uR 3aUp 0} Yavg pa) pue ‘payydwe ‘papjoysay si ‘| by
10 siuduodwiod ap Jo auo 03 jruoipodod Jopaiapoioyd yors jo indimo
L 91 3w paidap se Aeaae 1apsuag e jo sugaw £q spaxid jo uonensidas
DX QUM 3say) jo yoea uo Aeidsip ) Suidewn Lq xinrvwgns uoniued yora
JO dURIIWISURIY [Rapl Ayl Aq parduaus st .. g jo Aejdsip (1:°] Yl Keae
(511 Aqenns e uo pakejdsip aq 01 pawnsse si ‘qzl i w spdwexa 10)
g AIU3 INduy 3y sanjea dueiiwsuea aanedau Juiunsse jo ageded
Luasedsuen (ednayiod4y e ut uonenpow dnuewsuel) dxid se paziea
aq 01 uaq awn ay) Joj pawnsse sy Ydym ysew Krowaw-pauomped ay jo
XLIRWGNS Yors puiyaq Jopaapojoyd Junradau Kyeneds v Suoed £q g1
A1y urine pauses st (p1) ‘b w10y pajied uonriado vonewwns Yy
‘SUONIRIAN om) 131k 2dvd sajel K)nNua yoea jo |raas
1221400 N3|dWod 1yl moys asayf "¢ Jig ut pajuasaid ase sannua aay) Yl
JO (%,07) SUOISI3A [eiled Wol) [1r221 JO SN2 2] “wioj pauoniued ui p|
Ay wuda s xnew My unpnsal ay ) g1 81 ul umoys AIe asay | pasols
gt - et g sannua Lieuarg aejodiun [ruosuaup-om) (¢l
@14 w pajuasasd st xiew Arowaw ' oag) Jo Fwmuonued pue wyuode
2A04R Y} VO PISEY SUOINIY ¢ X § JO JOMIAU [RINDU JRUOISUUNP-OM) 1
JO UonENUIS [RILIANNY ......N.Q VWS 1S1Y Y1 LIRIQO 0) XTHTIUGNS YOord
104 spPNposd ayy JuUWINS PUR SISPY JUAWAI-AQ-IUWI D UR U0 ‘SIDUIRUWGNS
pavontsed 3y jo yara £q .17 jJo vonmaydninut £q pamoqo) st das
183y sy ] Aene [ruoisudwIp-om) v Ul paduesie aue saourwqns pauoniued
A1 213Yym qz1 T ur APeonewayds padtdap Se YN g <o e HITON g SYIN g <
SN N Y N s Y g ruigns [RUOISUDBIP
-0Mm) JO AR [RUOCISUAWIP-OM) ® Ol Xiew Yp o Ruoisudwip-1nog
ayi jo Juiwotiued 151y se p31a1diann aq ued (p1) ‘b wi vonriado ayy
g xiew dunemas ag o)
15350 L1Ud pasois ay) o) sadiaauod xuew Juninsas ay) [hun pajeadas st
ainpasosd ayy, suonriay wanbasyns Joj (p1) by ur | g owgdas o) pasn

SEYIIYM XIRW N X N MIU R uijqo 0) Suipjoysaig) £q pamoyjoy s sy

161 ANOW I JAHIVIDOSSY 10 NOTIVIN IW AN IV 100 v 7

e
Aairatioy ruoruaunp mop a jo Anuennied uo paseg Yaeas oW (q) pur e jranan
_-.—::1-.0::—- oM P o) xipea AAandauuoy —-.::—t:U-—-:-‘u-:; ” jJOo uonruo.g (e) T ﬂ..‘

(AL JUREER R £ 11 TR L 1T 7O

TOZ) o0 I INZy
AL RN ALY LTI VI LTI

-
NSVW AHOWIW
QINOILILYNYY
NIveniig4 any
INIGTOHS IHHL
W) AVHYY 04
]
EARCRYI LITRL
(ow)
‘HIUVIS W
wv2
( w-jn _
AT BTV
SINININI N oy y "
10 1101 SiNINI13 ™, _. it b
WEN 0 S XIMIVI IV [ ™
4330 STXMLVIY N S .
. e, [ANCTN TN . .
- w . . :
IR . . :
AN :._. [T . : .
w o w - . .
e :._ I i '
L, o a3, IV b
\ 2 _.“_... 4 o _.:_ b - :._.
Asimive y
™ Wejy 8 L /
o). e, MM.TM /
° @ @ 2823d”
( ..n. ._
ST M TS
) m
tege 8
(e} ool lw,
LN wow w
w4 K 7
.. -——
"R .
I ....u- 1o, s
w w n t
x1vw 1% 90 uamwe
ot JpiYo o
SHAVSE I IG ANY IVHEVE 1 YN 0st



lllll P

_ — = - vy

lllll <

—— - — )

lllll cy

—_o v
t
lllll v
y
1
1
I
- -
1
—_ -
'
) L)
o
u.
[} [
»
o
J =
=
[+
- o ~oen (Y
—
[=]
=
[=1
-
o
- - E
LI} ~
<
—
©
] v
c
o
—— - =]
! ) =4
&
lllll m ri
1 .
<
-
qo (&) Ll‘.
[
[ '
!
||||| o
[
'
- o -
L]
LN
[ | LI}
e e -

k=3

Pauomsod sjuawa (14 21 o sindino M yoiym asuiede sorrsedwos e uy
ploysaig aandepr 3o apqenea v se pasn st ‘Aepdsip mdur sy yo Ausumuy
12101 241 01 Jruonodoad Futag yndino 101313p Y. BWIYI uodAapojoyd
[ruomppe ue ojuo Apranp waned ndur ay; o ddeun ue Juydafoid g
PAZIE3I 3G sny) ued qz 1 81 Jo awayds ay | “pasn s1 swn Kue v Kese a4
A Aq pakepdsip Kinus induy a Jo (Ansudrur 1ydip) £912us ay 0} Jruon
-todosd pjoysasy) aandepe ue sawnsse SWIYDS Y | AWIYIS uoNeXR|II pur
Ploysaiyy aandepe ay) ynm asueunopad Wy.) Ul DYUDdES 0U A(leNNA Yum
Pasa aq ued ysew Liowaw Aseuiq sejodiun v ey 2PN SYNS3I Y| N0
pauaes sem (uonexejas pue duipjoysaiy) aandepe ‘pjoysasy) 3y) se pasn si
10103 1Indu ) Jo £352u3 3y asaym PIoysaiy) aandepe ‘pjoysasy) ‘0137)
sawayas Jmploysary) pue (Livuig tejodiun paddyd pue ‘Kieuss paddypd
‘panjean)nw) sysew K101wsw jo sadK) SNOUIRA 10 INV.) 34} JO durwIojIad
41 JO UONEN[RAD [EDNSHTIS YOIYM UL NY.) J2U-|RIN3U € JO (s861 “1pyivy

(1482} wiag gersord
Ul pUE (1J3]) WHOY Xinew B SaND p210)5 ‘uoneInuNs Wy ) |rUOIsuUWIp-om) ‘g B4

SveET -
g 01000 G-
) 10LtL ¢
(€) 11100 €-!
L1010t Z-¢
€eep 01Ol (-1
{
SveEZI =
" 00100 G=¢
0LLIO0 p=!
{2) Lt €=t
00011 Z=!
zewep L0001 | =1
SvEZL -1
I o110 G-1
a 00111l p=1
m 10001 €=
0t1L10 Z-!
| eiep 11001 =1
Haney winew
SUEIVSE I I IO ONY IVHEVE 11 1IHVN 49|




———

aspndu yuenea-aoeds Lvqie ue Juaaiyoe jo sueaw [daou e ag o) sieadde
AAYIS OGP 1S sy eyl Junou yuom s sasoydsiway Runesdai
se dunoe Agasay) “ysewgns yora gdnoayy pannuasursy wydy ayy anquisipa
Apuopuel L3y pue HSEUIGNS YIrd puiyaq Paenis sIasngip aie asay|
Sjuatwaga duneadsin Leneds jo Avaae ay) g paonpoid sy ey uonguIsp
ANsuaiu 3yl Jo uoneadaul awy A|grua 0) RINWED UOISIAAY (].)) B jO
asn 341 sa21nbay 3WoYds JNT) SIY | YONGPII) Nuoaodo [ruds skojdwa

A10WAW 3ANCDOSSE IRUGISUAIP-0M) JO SUONR DU Muosnajpoidg) gy -fry

SIN3IW313
ONLLYHOIINI 1HOIT 40
AVHHVY AG O3x%IvE

uah AVHYY
.&ﬂ%_‘»‘:cqy L3TSNID e
R — — AvidsIa ¢ NOUVYZITVILINI
HSUYW DILJYNAS S ONV ONINHY3

1 - LNdNI

VHIWVD
alx

M2v80333 YVINITNON

0SOJdWO?
LAVHYY Od SAVIH3A0 AVHYY Y um%: 1v34
xigw Wiy 13ISNIT AvHHY Q3

\

NSYW JILdVNAS

AV Yy
Od
dWv
HIvBQ334 YVINITNON
N ABOW IW IATEVIDOSSY 10 NOTIVINIW LTINT WWOITEO ¢ ¢

YO ARy sEaym aegpad) eando ajeied sfojdwa awayass augy ‘9| fiy jo
SAWAYIS oMy ayi £q paisaldns se sysew AHANIIULOD andrufs se pasn aq urd
sapuardsuen siydeadojoyd Aym-pure-you|q ajduns ey suraw pagudsap
volgse) Ay ue saommw Aowsw Lreurq rejodiun asn o) Anpige sy

SN L3RUIG Y1 0) $a813a100 L10wRm aYy) ‘SUONIRIAN JO 13N JudIINS
v e IdAamop] csAedsip Ausuain pun savaan panjeannw w m::_...f:
‘opeur Agemuy aie Kene (1217 2y aaup o) uonedipydwe papwny pur 3u
“Proysagraandepe saye youq pay Kinua ay ‘Kieuig seqodiun ase ] !..:::u.
ruosuawip-om) duiznemu gy ydnoyie ey aloN Buipjoysay 017 pur
XInew APAIDIVU0D panieaninu ® Yiim Y.) (B3Pt ue jo Yy 01 JudjeaInba
aduruno)iad e sprak awayds sy eyl (g6 1 ‘1eyie pue 237) punoj siy .L___B
panted sy aonaapoioyd yoea ey (17 sy Al o1 pasn st indino sayndue
SI3NU Yoy (uonexe|as) yorqpady pakejdp yum saygndwe m:::.:. v
QW paj st yora pue ‘parenuane ae sindino Joiesedwod sy (paeangns)
pairdwos aiw ysew L1owsws 'y ay) jo sjusuodwios pauvonured ay) puiyay

mdw geied jo vonmuforay WONRINWIS Py ) Jruoisuaunp-om) 5y ‘8yg

A 10 oz
{g)
0 181

Z 1 | 1am
£ eiep
R ¥ T T
"' jo 0z
)
z @ [WEN 0 a1
Z miep
n = S
)
Z 1o ' | san [ ] 0 N
{eiep
7 on i o 1
STEIVSA TN IO ANV EVIIV 1 NHVYN tol
Ay incains




P

. pue pasjoauod Aiydiy v sadnposd (91) “bop Ut wiaay puodas ayqy d pue of
uaamidg diysuoneas rads ou staiayl j ' o adewy uw adnpoadar oy suap v
10 P A Yim PIULIOJSURI) dQ UED JUEN PRSP Sy, () Aq parew
Axoadde ag ued (91) "bij UL UOHDIIISUOIAL ) JO W) 1811 Y} Apuanbasuo )
suoneiea gloows £1aa aaey [iim aygdy paoegp ayl jo Ansuan ) ‘3uoy
Apuamyns st werdojoy ayy pur </ udaamiayg duRisp Y | “f 1alqo ay)
woty paesgpp wydy ap Jo Aisuau agy se pazwdonalr st Aras S Aym

Ay ey

(91) (CNS ) By

e 13y pavduagp
U1 UL 18211 JO SWAL OM) Ay pue (4 VRS S wmdojoy ay wo yuapo
WA Ay way ) Fuipaodar Juunp sem 11 SEJauuRWE JWRS 3Y) PYECIREITUT
wsdojoy 3y 03 1Padsas yum pauoisod f S wiaped apy Lq pawenpow

sty weagq sy e yum pawununip 3uaq weadojoy sy auldeun moN
(s1) SULAY SRIG b (W SEONPE ¢ () S N = ()L
SR UM 34 uaYl ued wreidogoy A Jo
ssurmmwisuesy spopgdwe ay g susaned (puiduo oY) Jo UOIDRIGIP [0S} dY)
wasadal pawnd sjoquiks awes 3y 13] pue sned om) ) Howap 3 '3 pue
f YY) Paps0dal KISNOIURINUIIS I SUOLIRIDOSSE JO ssied randas om)
YIYm 1o Weadojoy (ausas.| # JIPISUOI am BOLDUNSIP SHY) aeeadde o)
‘weadojoy awes Ay uo swajed
paimosse Jo sed U0 uryl 230w A101S 0) AN[IGE 1IN0 SHWI R Sabowsw
1PNposd-131N0 ) pue SAUOWAW aanenosse dydrado|oy Uaamiaq aduaap
[RIANID © ST 3I3Y] “IIAIMO] “1IT[1RI PISSNOSIP SILOWIW IANRIDOSSE 1nposd
-32100 ay) A PANGIYX3 JOIARIIQ Y Jo JudSIUNWSL die satadosd asay)
“S2sE210U1 pasowdl st ey weadojoy ayy jo uoniod ay se Aenpead sapesdap
Y ANJAPY im PAINIISU023I 3¢ ued wianed papiodal ay) ‘parunuya st
widojoy Paproaas ayy jo uonsod ¢ §1 pue aglo 3yl PNNSUIAT os|R urd
waned 12412 JO SUOISIAA [EIEd PILIOISIC] 310 YIBI Yilm pajedosse Juiagq
swaned oMl Jo Jury) A|dwis am urBodunun sawoeddq U e pur 1xalgo

UE UIDMIIQ ISR S W UONDUNSIP AL /L 3 m fponruayds umoys
SESIYL 19410 Yord gnm pajeidosse u1dq SEosweag 103(qo pue a0uasajal
YD JO NUIYY OJAINY) Urd ap wieaq 1»3lqo Ayl yum wesdojoy ayy qu
APUIUNE A PADNIISHOIII 2Q OS]E URD HIEIQ 2DUAIAJII 2Y) “JIA0ISON "Wnaq
2DU213)35 NUES YT YU paeUIUnip st wesdojoy ay) uagm parniisuodal sy
13lqo ay) *ad1213J31 PAPOd B YNM PapIoaal st Pafgo ue Jo wesdojoy v uaym
Y1 (6961 109QR1) (96 ‘UIPIIAR URA) A1Rd PAZIUB0DIS SEM 1| SAUOWIU
aapmposse pue ondo uaamiaq yuip aioue sjuasaada Aydesdojop

SIoURA aneossy nydesdojopy A

‘K1owaw nydesdojoy pauauo-aded v 1o A30Waw DIUOIDND
ue duisn sampgedes yoseas su Guipuedxd snyl ‘pasaye ag ued jJudauod
asoym Wv.) dlgewiesdosd v azipeas 01 (£861 P 19 ssoy) 1S dndooiau
-Bep uonry ay) se yons soenpow Wy eneds 3mejoauou uaaup-13ind
-wod v duisn w voneayiduns 3y sy ysew Areuiq aejodiun v jo 38ejueape
PAPPE Uy (SRAE1) 23] puR SIIr) “Jayst AQ PaQUISIP UIIQ OS|P sey SaIN)
-apye andwed pur SJUAWIE3 AANEDOSSE (RDNDO Ul N TSI UR JO 35A 3y [
‘passarddns aie 1943] ssauiydug 10 Asuaiu 3jqeisnipe KHenuondagd uaad
v mopaq Fujpey adaap ay) £g padrejas adewn ndino ue jo sued e yoiym
w Aipgeded quipjoysaiyg) ajgruea pajjonuod £||esiuosda)d ue sapraoxd
0S|R AMAIP SIYL (9861 ‘SR61 P 12 wirl ‘dwnjoa siy) ‘7 aadey)) ose
‘TROL RITDRY L PUR IPIRA 11861 I 12 3pIRM) (INTTSIN) 0ienpow 1y8)
[eneds [uurydo1aiw e jo pie ag) ynm £]jeondo-uoi)aafa pazijeas st Yorgpaa)
seautjuou (aesnd wawalueise sigl Up (| 3§ Ul UMOYS S SAWAYIS Om]
aaoge ayy jo spadse Juiniquod vonruea y -duissanoad jrudis ur suonriado
[n1amod 0m) AMINSUOI YPIIYM ‘AJUBauLjuou paldajas e Aq pamojjog asuodsal

ienpow
1Ay gennds sndo-uondaga ue yum pavdwagdur K1owaw aANeOSSE [ruoIsuduip-om| L) iy

SINIWI I ONIHIVHOILNI

1HOIT 40 AVMHY A8 03I¥OVE Wv3Q 43SV WISW
“Agowaw 3nenosse sdeidojory g1 N4 Oadivw MY INOLLILHYY) ZOZJVWWMWM Q32v0d q@
NSYN DI IJVYNAS NOISSINGNYHL /@ B
HOT12041SNOI Y 9N10¥0I Y \ S o L YI1117dS
; 0000807 3 P wv3a
mmmmmww -t oy BITATNY
Q /
wmwwowm NOILDIMONd e
Q O -
0900
- . mwomwwo AVHHY .
\ e ,%,Pp.. SASINERMERS L
N -
wea60| Oy we60 oy xw«wwwwu
LS ANOWIW JATTVEDOSSY 1O NOTIVIN IWAL LIWNE IVOLTdO 7 SEP VS 13N 1O ANV VIV 1 HIHVYN 9y
— e At B kel pow B PR —— WP PO WES SRR e S SRR Y




VT ———Y

aas 1 ausodwod Al Jo W00y UHOISURI] 1IN0 Y ‘Kauasedsuren 281wy
Aodwos v urapis £q apis pagueaie 21w L10udu 34) Ut P30S 34 01 v 1Y)
,uw_::_ YL 0T A W uMOYS SE PAIISUOD ) w00y Ay SV
PAOIS YL |IE SUIRINod eyl o v parujd s wdojoy uopsuRI) 1aUno§ Yy
g apmydwie 3y ayy jo wsogsura) 1auno.4 ayl ‘d Aumd e saonpoad
C7 sud] AFRWE JUIPIUL AYL JO UOISIAA PIPIOYSIIY) B IPIS Ao st to
Aanposd puw it uo uapdUL ITew 341 12353p 0} 14 ueid wi pasn spamenpow
WAy peneds v oaanydswieaq ay y3nony washs ay) 13103 2qeun ndu uy
‘61 A UL UMOYS S1WISAS ([RISA0 Y | ‘spnpoid 13uur as3Y) Jo yord jusw
-apduit 0) pasn a4 ued (py6l Qan-apury ) 1012131103 [B11dO JUIYOD £ IRY)
s1s233ns uonrAIISQO Sy | duejd uoneILID Y JO uiduio ayy e paienead
(4 %), f pue (4 X )/ sa8rwil 1Y) UIIMIBG UOTIV[IIOD [BUOISUIWIP-OM) ¥ O)
apeamnba s1 uonenba siy) uy A pue X 1340 uoneIdaul [PUOISUIWIP-OM) Y |

(81) (X JLAP AP (0450, ) S
13
AP AP (4N J(4 ¥ W)L = (A (.
(A4 %)/ a8eun Induw

UR YiIm PaIsSAPPE St uaym KAowdw 1pnpoad-1In0 [ruoIsBawip-omi gl
Aq pasnposd ndino ay) 10§ (91) ‘b4 01 snodojrue uoIssaidxa ue uIRI4O I

£I0WA IANTOSSE JO 13POW FIOMIA (1030 £ jo uonmuawadun sydeidojopy ‘6l "4

< €9
]
| i
H >
2 A !
1 01y wobo
19H v
Aound Puol3g d
win16ojoy§
sn v
Isny . 1
3]
—e —1< «
T induy
AMAN() W:«:iv
poyang )
6si ANOIW AN FATEVIDOSSY 1O NOTIVIN BN TANT IVORTJO v ¢

...
:: :.,:_....:A_,:....;N;.(_;m..;....:_
W

(1) by w pauimiqo Y a1 01 snodopeure SEYIIY W Cuondun)
[RUOISUAWIP-INO] FUIMO|[0) Y)Y I)Go am (4 °Y)
SOM} SHoaunuod gim | o
‘Aeondo payusuapdun £)panp aq jouued ey 1PUIIY JRUCISUIMIP-INO) ¥
SAAjOAU 10w aanenosse Popord-1aino ue vl swaned [RnosuAwIp-om)
1018 0) }dwane am naym pawiopad ag 1AW JRY) UONPWIOJSURI] SR
Y uONDIS SNOIAA Ayl UL PAQUIDSIP SY (SRET IRYIR PUR SINRSY) IN[Ied
PAISIIA W2ISAS B JO UONEIYIPOW B STPUR (9RG] SRS pue §arg) Ajriuaw
-uadxa pajnsuowap APuadas sem g g ur umoys wansks [pando ayy

/ suonduny [ruosuAW

Gy

d SJOPAA [RUOISUAWNP-2U0 21310851 ayt Juoeiday

SUONDIS 12110 0
passposip saowaw opord-aamo 2y) o) waeamba Lruondun) aw pur
SUsaNrd RUOISUIUIP-OM] 2H0IS UED INY) SILOWAUN IANRIIOSSE IZISIYIUAS 0)
pasn aq uped swreadojoy seuepd pasapdanue Moy SSNISIP IRYS am 313g] “uon
-eodninur Kiving dutunograd 1oy sapge) dn-yoop jo uonenaed (eando ayy
0} sauowaw 5oy pandde aavy pue Aydeadojoy awnjoa Juisn saowaw
aaneposse pajoldxa aary (ORe1 ‘pIojARG) pur 1sanny) yoa) midioan
12 SIDPOMOd pur paojAeny: wesojoy 2wNjoA © U suoneosse adninu
aras oi apqrssod st sy ‘swrifojoy seueid ur readde ey swiag oo
a ssarddns 0y pasn aq uea LAuadoad sy swesdojoy seuepd wosy swnjoa
sagsin@unsip eyg) Apadosd v st vonewiungr Jo a8ue ayr 01 Anasuag

‘swerdojoy avurjd uo Fuxaidnynw pue <ydesdojoy
awnoa sanbuyda) om) Jo auo yum Lydridojoy Juisn suoneosse ajdujnuw
P105233 0) ajqissod ‘13aamoy ‘st )} wraojoy [ausasq 3jFuls © VO sUONRIOSSE
adnnu duipaodrar jo Anpgissod ayl pauonuaw 134U oym sogee) Lq paziu
-A02as sdeysad sem sadowaw aaneposse dydesdojoy jo voneinug sy

“Kynun
g [|IM HONINIISUDIAL 3Y) JO oned 3sIou-0)-[eudis ay) a3vaaae ) uo uayy
‘staned paiois ay) Jo auo yum i Junreunungps £q wesdojoy sy 1dnNsu0I3)
pur wridojoy awes ay) vo safeuwn AJRINQIE OM) 2I01S aM J] I NASION S
wid) puodas ayl seasaym '/ waned ay se aiqeziuBooas s1 i 1Sy 21 jo
UONDNIISUOIAT Y) 1Y) S1DUIRYIP Ajuo 2y ] "uud) (jeudis) 1s1y ) se Fuons
s® st ua) pnpord-ssoss ay) (91) by up ‘wesBojoy v ur uaddey jou saop
sty swed du ayy jo papoxd Yipmpurg-aoseds agr jo 1001 asenbs
ay) Aq passasddns ase £10waw 1HAPOId-12IN0 Y)Y U SWII) SSOUD YY) ey
S1ADUMIP Y|, Sud $5033 Fuudpan ynm fuope pameiqo s1 vonrdosse
L0100 oy 1ey) wi Aowaw papoad-121n0 ay) jo eyy o) e osge
S1IOIARYAQ SIY | "'/ JO HONDINNSU0IAL AY) MIIA 0] K1) IM UaYM 3OU NN
AsAEd 0 1 Paga sppure ‘asuwaradde ant) pydads ‘wopurr v sey unay
puedas siyy o) anp waned paaasqo ay) ra2udd up 3Feun AgrsvRorasun

SEEIVSA 138 1IN 10 ANV TV 1 VN Ryl




—~ =

P04 MIN A L Ioaryag jo uonezediy, (6r6l) ) QU
VOELY Mg wiaag QLIS (9861) A TDINInG puk T toiey T A o0 T Ry
B9 (49 WG VI HOKDAE ol apy (yRel) A DN pue ‘erKidng | raey
10Z1 ‘61 10 pddy (0861) [ CPIOJARE) pue ) tsane)
UosOg] pUP AP0 CAPRY el puE pUIN jo SIpmS. ((861) S T1agsson
PILIIYD ) BIPQIDE PINDS CIndiin ) sYI0 N IPININ dopsyiogy ($861) o B “ydeay
T NA) WO IRI6) W ) Apooyy pur ty 3y tsei) C f fumnpons)
OR L1 RST Whg WIRGG RS (IR61) D N ] CURSSIIENU3A pue ) SR O TN B TS
651 981 HE ] Y [ IVHT (6961) (] “oyre)
ToHim pam dd
dio ) 3dgy gy dep vSe C8cp Y4AE (SR6L) N T A pue ) ) Tsape) T () v aygsyy
SLPl 69pt VT 1O wdy (S861) 1 ARG PUR Ty RIRIG T(g CSIIeSd TN iediey
Ry d Ly (r wenBungsog U1y nuuy YO a3 AL (SRO1) (TSRS puE TN Ciedied
€TY-02) dd hemep) tonop) ‘1) gy

Aaaoaay poudiy aaapy doj ysO Suudg 15281 yrag (9861) 'S “eiryrAipy pue CN eyiny

T-Ud Cded suypeap-isog aan ‘a8opra awgheg Cindun ) sdg) 1203y
dop vSO (s861) "L M 'SIPONY PUB TV WiAISRIRL ) Iy (UIRqUIYIRY T () Tuepio)
UL ST V04 UnUAS F14S (9861) W Tuate)
611 '$T9 20L] Waas IJS (9R61) 1) “H IIUYSAN PUe g ) SIpURPpALY Ty Y PRV
top LID B 02y 1oyoasd (LL61) S Y “SFUOL puk v 'S 71y UM [ CUIISIAANG TV f Tuossapuy
RS 9C ‘1 nal MO (98611 7 ( ‘uIstapuy
SRE-GLL 9T WA ) g (LL6Y) S Turwy

SDUINPIY

“RIIRA) SR,
JO ANsIaAlugy Y pue YA ) Je aload el e se RVl 44 Papun st ydIRasa) sig)
e21R SIY) VI
oM YY) JO SIPIUSE (RIGAIS U1 PIAIRIOGRILOD IARY M WOUM YUM 32| "G ) PUE TYSAHRNUIA 'S
kg v 4arg O ) Buol f ‘ejeisopy-nqy S A Sandeaj|od Jno aFpatmounde I

spuawdpamoundy

swaishs Fuissanosd uonrwiojuy jeando jo juawdoaasp ayy apind jum
ey promawel) snuuyiuodje seudoidde ay) apiaosd Lew voneindwodn jJo
SJAPOIL PAIRI3I PUR SYIOM)IU |RINIU 230)213Y | "sIyaroidde 13110 1340 sade)
-URAPE MOYS 0) GNUNUIOD [IM SIPPOLW 353y Jo suogiviudwajdun frondo ey
1>2dx3 urs M ‘saseUl vonesnsiydos 11BY) pur 2312WI SIHPOI MOV SY
S[APOUL JIOMIIU RINGU JO UONRINUNS Y] 10} Pa1inbI) SIIRYM PUR 12§)0 O}
sey sondo eym uaamiag sIsixa Anjiquedwod diseq v oswalshs Fnssasord
uoneusojul jpondo jo uvonmudwdwy Ayt v n)asn droxd M 2doy Im
1241 sondo pue Juapow YJOMIIU [RINIU UIIMIAQ NUI| & SIYSI{QRISI 1a1deyd
SIyl Ul paquRsIp SAUOWdW afrdosse (eando jo uonejuawafdusy ay g

uoISHPIU) A

‘61 "3 ur umoys se 1ds weaq ay) ydnosyy paqoad aq uwd Jnsas Ayl
AnjIgeIs paydeas sey wsAs ay) uayp “dooy (eando 3yl puncie uonEIAN XU

191 ANOWITI HAHTVEIOSEY 10 NOTEVENIW AW aVOtdo 17

ap 107 Jndun aY) L2W0d3G YNsaI Yy pur ‘uonnQEISIp Y31y siyr sproysayl
owynpou )y peneds ay g (g1) hiy Aq paguasard se Kjasdasd papoad spum
aendosdde oy £q pany@om youd safewnl pasols ay) e jo vonssodiadns v 5y
11 2urid uo wappw WAY ay1 asojsayt sixe pondo a) punose pasauad
sreadde aBeatt yiwe 240 1Y) yons pagpys si ajoyuid siy) o1 anp ' e pameiqo
uotdRNsUEat aypasas v sy ydesBojoyd apsodwron sy ut afewt i ayi jo
uomsod ay) 12 ' duegd 10 pa1edo| S pawitog st dapord sauur e aYi Yarym
wo ajoyund e ySnop pannusuen ydy ay ) wesfooy sy ur pasols 3dew
ansoduwos 2Nud 3Y) SIPNISUOIAS doyuid yaea ydnosngy pantusurn wydy
Ay uay) ‘uonduny enap e Aq sjoyud yors syeunxosdde am §j 1012100
® os|e St g 01 % wouy w3shs jeondo oY) sny ], g suepd e yorq tg sueyd
© 143y 3y Jo unojsuel) 19Ny Ay saonposd 7 sua [ruy ay| "sddeun
2WIPS 3N SULRIUOD pue 151y YL Se Kem Jwes 3yl i pajedsuqe) st wesdojoy
puodas siyy "¢ duejd e pasejd werScjoy wiojsur) 12UNO4 PUOIAS AY)
sajeuwingql pue 7 suap £q patewi|jod st ajoyund yoea g pamwsuesy wydy ayy

t61) Apap (A4 X) o,/ | ] =

O apap (A8 A% - X)), 0 = :.;.\,

o) jruoipodolrd Aimrunxoidde s1 ajoynd yara y3nonp pamuwsurn ydy
ayt jo apapgdwe ayt sy widuo si e waned vonre100 Yors sjdwes o)
t4 aueqd e pased st sajoyind jJo Aeare ue ‘(gR61 “yv 12 SiljRS{) SUOIR{3IICD
{in4 34y you ‘sonpord 1auur ogi Ajuo daay isnuws am sutg 'y dued e
paesndas Afeneds pauog ase apisodwod ayy dn axeurs jeys saew enplatput
ayl pue ndur ayy uramiaq suspned uoneEIEd Y ‘IowrpLIod (rando
ayl Jo aduruRAm Yiys Yl 01 angq ‘ydeiforoyd apsodwod syt pue 'y e
adewn a) uaIMmiaq voneaod i Furaq vy sueid e dpanjdwe 1y ay) wr
SIS yorya ‘suaf Funurojsuesy 1313no4 e osje St g) “9ig v 17 suaq ‘paunio)

61 314 10 vonritamaydun agy w1 pasn swesRojoy wiogsur) 131UN04 Y1 Jo Fuprosay ‘97 By

543} paioys
ULOISUDI | 3q ol
wosbooy) 431)10 4 s3abow

wnaq aduaidjaM ’ N

SIEIVSE PN (INVY EVIHIEVE 1 DIIVYN 091




-~

—

981 L8108 1A 1de) (9R61) M S "Buomy pue 'y ‘Aumy
796 096
TIT (uopuo 1) amioN (6961) ) "1 “swipg-anguor) pue g O urwaung Cf () meysyim
LST-€5T "IR1 g 428 ‘wopuo 0§ 'y D0Ud (TL6L) 1 () "meysjim
pue(iong ‘Aisiaansgy 4finquipy ‘uorieudssi() [riopog) LL6E) [ (] ‘meysiim
YLOT 9902 0T ¢y 1ddy (1g61) | °( ‘esmyreyl pue 'y S N Y Sstag ) Sapaeg
OPT-PPT L 2T M0y (Z861) ) f ‘PIEYORY) pue © ) aprem
S8A1 ‘(pannqns) dwoayy fup supig CEE T AR T
‘ninqing prung “mdusn y SYroMiaN Jounan doysyiop {S861) Q1 ‘snjesq pue g ‘ysaieyuap
€6€ "(RE T 1) 1ddy (£961) [ ‘g ‘uapsasp uea
641 01-11 L0y fup supsp 3331 (p961) v 18 sspurp
Q) "uoiBuiysep
.—-Q_ﬁ-:}a " m-:v_e—D-a_ 50@5&—._: Jjo n::::—:m: Ahhﬁ_v ‘A ‘A .2_:0m_< pue .,Z v .>5=3-—x.b
€99 ‘7T 3uy
1d() ‘sanssy 120U ) S 4 IS vo anssy 1e10ads (¢R61) ('SP3) ) ‘aprep pue "4 v ‘Aenfue)
OTL-811°01 w2 1de) (9861) 3 ‘worepy pue g ‘oM r ‘Suwungy ¢ L] TTUN
06t S/t ‘TT Bug 1d0) ((R6l) o ‘wossapuy pue Qg Csugesy “M ssoy
681 'S79 204f s J14S (98611 (1 S "Ysaiequap pue “r ‘Buogy (g sipesq
001 -86 '00 127 19¢) (5861) ‘N ‘reyaey pue ‘sesy
T EIT 601 Swry pros wyy (g361) Z ‘vpriog
£76-608 '9OIT g 135 ‘uopuo ] sog 'y 044 {SR61) ) ‘ydoy pue g mBRoy
AU | 159V ysoy “amwag “wy dog 1dg) 122y muvy (9861) () ‘shiesq pue *ry g ‘yary
B8E ORC "T-DINS wiags ) unjy 1sag v JFA] TL6N) Y Couryey
L1620 " L1-30 woanapy quongy ¢ 41 (1861) 'S "o ) pue (g ‘Ynug gy ) gy
(paausgns) A100y] fuy suv4ap 3394
sy day yoane ) (9g61) g ‘Ysaequap pue ty 3 ‘Yorwapoy 'y g sausoy N ol
LL{e 144
€ stydog aag () (0611 ' O ‘uewsung pue TOA RS ) | sudfyy-anduon
ATE 08 61 1508 yropy (be61) v w3y
80 d ¢ uorBunpo Ty nuwy yso Sy yoay (SR6E) ‘N “1eyaeg pue g -y "33
SI8T 4 Dy 141 (5861) v "vadoopy pue g -y soory) 1 taquie
HOA MAN pue
uniay ‘qnpap 103undg LS TUTTEYTY] AANENOSSYy pue vonezyuefiy- 1o, (pRet) 1 ‘vavoyoy
VOA MAN pur wipag ‘Avpap 2afupdg Lowd aanesrossy (8L61) ') ‘usvoyoy
. 6SLLSY NT-) andwo ) sunyy 33 (TL61) 1 ‘uvavoyoy
RSST #SST 6L VSI) 1S proy oN P4 (ZR6Y) [ [ ‘praydoyy
681 081 00t roiy wnuasg AIdS "(f861} ¥ LELTETNR FEETY

SULIVSA I3 Ny IVHAVAY 1 unvN 91

——.an AL



- P—— Al

DBCJC.A\A&(. P

Reprinted from Optics Letters, Vol. 12, page 448, June 1987, .
Copyright © 1987 by the Optical Society of America and reprinted by permission of the copyright owner.

Architectures for optoelectronic analogs of self-organizing
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Architectures for partitioning optoelectronic analogs of neural nets into input—output and internal groups to form a
multilayered net capable of self-organization, self-programming, and learning are described. The architectures and
implementation ideas given describe a class of optoelectronic neural net modules that, waen interfaced to a
conventional computer controller, can impart to it artificial intelligence attributes.

In earlier work on optical analogs of neural nets,!-% the
nets described were programmed to do a specific com-
putational task, namely, a nearest-neighbor search
consisting of finding the stored entity that is closest to
the address in the Hamming sense. The netacted asa
content-addressable associative memory. The pro-
gramming was done by first computing the intercon-
nectivity matrix using an outer-product recipe given
the entities that one wished the net to store and then
setting the weights of synaptic interconnections be-
tween neurons accordingly.

In this Letter we are concerned with architectures
for optoelectronic implementation of neural nets that
are able to program or organize themselves under su-
pervised conditions, i.e., of nets that are capable of (1)
computing the interconnectivity matrix for the associ-
ations that they are to learn and (2) changing the
weights of the links between their neurons according-
ly. Such seif-organizing networks therefore have the
ability to form and store their own internal represen-
tations of the associations that they are presented
with.

Multilayered seif-programming nets were Jescribed
as early as 1969,” and in more recent descriptions>-1¢
the net is partitioned into three groups. Two are
input and output groups of neurons that interface with
the net environment. The third is a group of hidden
or internal units that separates the input and output
units and participates in the process of forming inter-
nal representations of the associations that the net is
presented with.

Two supervised learning procedures in such parti-
tioned nets have recently attracted attention. One is
stochastic, involving a simulated annealing pro-
cess,'l12 and the other is deterministic, involving an
error backpropagation process.® There is general
agreement, however, that because of their iterative
nature, sequential computation »f the links using
these algorithms is time consuming. A faster means
for carrying out the required computations is needed.

Optics and optoelectronic architectures and tech-
niques can play an important role in the study and
implementation of self-programming networks and in
speeding up the execution of learning algorithms.

0146-9592/87/060448-0:382.00/0
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Here we describe a method for partitioning an opto-
ele:tronic analog of a neural net to implement a multi-
layered net analog that can learn stochastically by
means of a simulated annealing learning algorithm in
the context of a Boltzmann machine formalism [see
Fig. 1(a)]. The arrangement shown in Fig. 1(a) de-
rives from the neural network analogs that we de-
scribed earlier.? The network, consisting of, say, N
neurons, is partitioned into three groups. Two
groups, V; and V,, represent input and output units,
respectively. The third group, H, comprises hidden
or internal units. The partition is such that N, + No +
N3 = N, where N|, N,, ard N; refer to the number of
neurons in the V;, V., and H groups, respectively.
The interconnectivity matrix, designated here W, is
partitioned into nine submatrices, A-F, and three zero
submatrices, shown as biackened or opaque regions of
the W;; mask. The LED array represents the state of
the neurons, assumed to be unipolar binary (I.LED on,
neuron firing; LED off, neuron not firing). The W,
mask represents the strengths of interconnection
among neurons in a manner similar to earlier arrange-
ments.2 Light from each LED is smeared vertically
over the corresponding column of the W, mask with
the aid of an anamorphic lens system [not shown in
Fig. 1(a)}, and light emerging from each row of the
mask is focused with the aid of another anamorphic
lens system (also not shown) onto the corresponding
elements of the photodetector (PD) array. The
scheme utilized in Ref. 2 for realizing bipolar values of
W, in incoherent light is adopted here; it consists of
separating each row of the W;; mask into two subrows,
assigning positive-valued W;; to one subrow and nega-
tive-valued W;; to the other, and focusing light emerg-
ing from the two subrows se .arately onto two adjacent
photosites connected in opposition in the photodetec-
tor array. Submatrix A, with N; X N| elements, pro-
vides the interconnection weights between units or
neurons within group V,. Submatrix B, with N» X N,
elements, provides the interconnection weights be-
tween units within V.. Submatrices C (with N; X N,
elements) and D (with N3 X N, elements) provide the
interconnection weights between units of V; and H,
and submatrices E (with N> X N, elements) and F

¢ 1987. Optical Society of Ameri-a
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Fig. 1. Architecture for optoelectronic analog of lavered
self-programming net. (a) Partitioning concept showing
adjustable global threshold scheme. (b) Arrangement for
rapid determination of the net's global energy E for use in
learning by simulated annealing.

(with N, X N, elements) provide the interconnection
weights of units of V; and H. Units in V; and V.
cannot communicate with one another directly be-
cause the locations of their interconnectivity weights
in the W, matrix or mask are blocked out (blackened
lower-left and top-right portions of W,). Similarly.
units within H do not communicate with one another
because locations of their interconnectivity weights in
the W, mask are also blocked out (center blackened
square of W,;). The LED element A is of graded re-
sponse. Its output represents the state of an auxiliary
neuron in the net that is always on to provide a global
threshold level to all units by contributing only to the
light focused onto negative photosites of the PD ar-
rays from pixels in the G column of the interconnectiv-
ity mask. This is achieved by suitable modulation of
pixels in the G column. This method for introducing
the threshold level is attractive, as it allows for provid-
ing to all neurons in the net a fixed global threshold, an
adaptive global threshold, or even a noisy global
threshold.

By using a computer-controlled nonvoiatile spatial
light modulator to implement the W, mask in Fig. 1(a)
and including a computer—controller as shown, the
scheme can be made self-programming with the ability
to modify the weights of synaptic links between its
neurons. This is done by fixing or clamping the states
of the V| (input) and V., (output) groups to each of the
associations that we want the net to learn and by

I
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repeated application of the simulated annealing pro-
cedure with the Boltzmann or another stochastic
state-update rule and collecting statistics on the states
of the neurons at the end of each run when the net
reaches thermodynamic equilibrium.

Starting from an arbitrary W,;, and for each clamp-
ing of the V; and V., units to one of the associations,
the states of units in H are switched and annealing is
applied, until thermodynamic equilibrium is reached.
The state vector of the entire net, which represents a
state of the global energy minimum, is then stored by
the computer. This procedure is repeated for each
association several times and the final state vectors
recorded every time. Note that, because of the proba-
bilistic nature of the state-update rule discussed later
and in Egs. (1) and (2) below, the states of global
energy minimum in the runs for each association may
not necessarily be exactly the same. Therefore the
need to collect statistics from which the probabilities
p,; of finding the ith and jth neurons in the same state
can then be obtained. Next, with the output units V.
unclamped to let them run free, the above procedure is
repeated for the same number of annealings as before
and the probabilities p,,” are obtained. The weights
W, are then incremented by AW, = n(p,, ~ p,,"), where
n is a constant that controls the speed and efficacy of
learning. Starting from the new W,, the above proce-
dure is repeated until a steady state W, is reached. at
which stage the learning procedure is complete.

Learning by simulated annealing requires calculat-
ing the energy, E, of the net3.1:

E=-%Su,sl, by

!

where s; is the state of the /th neuron and

u =N W, —8+1, 2
I=t

respectively. A simplified version of a rapid scheme
for obtaining E optoelectronically is shown in Fig.
1(b). The scheme requires the use of an electronically
addressed nonvolatile binary (on-off) spatial light
modulator (SLM) consisting of a single column of .V
pixels. A suitable candidate is a parallel-addressed
magneto-optic SLM (MOSLM) consisting of a single
column of N pixels that are driven electronically by
the same signal driving the LED array in order to
represent the state vector s of the net. A fraction of
the focused light emerging from each row of the W,.
mask is deflected by the beam splitter BS onto the
individual pi:els of the column MOSLM such that
light from adjacent pairs of subrows falls upon one
pixel of the MOSLM. The MOSLM pizxels are over-
laid by a checkered binary mask as shown. The
opaque and transparent pixels in the checkered mask
are staggered in such a fashion that light emerging
from the left subcolumn will be derived from the posi-
tive subrows W,,* of W, and light emerging from the
right subcolumn will be derived from the negative
subrows W,,~ of W,,. By separately focusing the light
from the left and right subcolumns as shown onto two
photodetectors and subtracting and halving their out-
puts, one obtains
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At
L

E=-1% (T W, * - W[_,‘)sj s,

=t

(S

N (Y‘ W,.,s,)s,, (3)

f =t

which is the required energy. In Eq. (3) the contribu-
tions of §; and I; in Eq. (2) are absorbed in W. The
simulated annealing algorithm involves determining
the change AE in E that is due to switching the state
of the kth neuron in H selected at random, computing
the probability p(AE,) = 1/[1 + exp(—~AE:/T)}, and
comparing the result with a random number n,¢(0, 1)
produced by a fast random-number generator. If
D(AE:) > n..the change in the state of the kth neuron
is retained. Otherwise it is discarded and the neuron
is returned to its original state before a new neuron in
H is randomly selected and switched and the anneal-
ing procedure repeated. This algorithm ensures that
in thermal equilibrium the relative probability of two
global states follows a Boltzmann distribution?; hence
it is sometimes referred to as the Boltzmann machine.
In this fashion the search for a state of global energy
minimum is done by employing a gradient-descent
algorithm that allows for probabilistic hill climbing.
The annealing process usually also includes a cooling
schedule in which the temperature T is allowed to
decrease between iterations to increase gradually the
fineness of search for the global energy minimum.
Optoelectronic methods for generating p(AE,) that
employ speckle statistics'® and for generating the ran-
dom number n. by photon counting!* can also be in-
corporated to speed up the procedure and reduce the
number of digital computations involved.

The architecture described here for partitioning a
neural net can be used in hardware implementation
and study of self-programming and learning algo-
rithms such as the simulated annealing algorithm out-
lined here. The parallelism and massive interconnec-
tivity provided through the use of optics should mark-
edly speed up learning even for the simulated
annealing algorithm, which is known to be quite time
consuming when carried out on a sequential machine.
The partitioning concept described is also extendable
to multilayered nets of more than three layers and to
the two-dimensional arrangement of synaptic inputs
to neurons, as opposed to the one-dimensional or lin-
eal arrangement described here. Other learning algo-
rithms calling for a multilayered architecture, such as
the error backpropagation algorithm,®!* can also now
be envisaged optoelectronically by employing the par-
titioning scheme described here or variations of it.

Learning algorithms in layered nets lead to analog
or muitivalued W,,. Therefore high-speed computer-
controlled SLM’s with graded pixel response are
called for. Methods of reducing the needed dynamic
range of W, or for allowing the use of ternary W, are,
however, under study to permit the use of commercial-
ly available fast nonvolatile binary SLM devices such
as the Litton/Semetex MOSLM.!* [t is worth noting

that the role of optics in the architecture described not
only facilitates partitioning the net into groups or lay-
ers but glso provides the massive interconnectivity
mentioned earlier. For example, for a neural net with
a total of N = 512 neurons, the optics permit making
2N? = 2,62 X 10° programmable weighted intercon-
nections among the neurons in addition to the 4N =
2048 interconnections that would be needed in the
arrangement shown Fig. 1(b) to compute the energy E.
Assuming that material and device requirements of
the architectures described can be met and parti-
tioned, self-organizing neural net modules will be rou-
tinely constructed; then the addition of such a module
to a computer—controller through a high-speed inter-
face can be viewed as providing the computer-control-
ler with artificial intelligence capabilities by imparting
to it neural net attributes. These capabilities include
self-organization, self-programmability and learning,
and associative memory capability for conducting
nearest-neighbor searches. Such attributes would en-
able a small computer to perform powerful computa-
tional tasks of the kind needed in pattern recognition
and in the solution of combinatorial optimization
problems and ill-posed problems encountered, for ex-
ample, in inverse scattering and vision, which are con-
fined at present to the domain of supercomputers.

The research reported was supported by grants
from the Defense Advanced Research Projects Agen-
cy-Naval Research Laboratory, the U.S. Army Re-
search Office, and The University of Pennsylvania's
Laboratory for Research on the Structure of Matter.
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Optoelectronic analogs of self-programming neural nets:
architecture and methodologies for implementing fast
stochastic leaming by simulated annealing

Nabil H. Farhat

Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from
conventional approaches to signal proceasing. It leads to self-programmability which alleviates the problem
of programming complexity in artificial neural nets. I[n this paper architectures for partitioning an optoeiec-
tronic analog of a peural net into distinct layers with prescribed interconnectivity pattern to enable stochastic

r learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is
] r of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and
methodologies for appreciably accelerating stochastic learning in such a multilavered net are described.

These include the use of parallel optical computing of the global energy of the net. the use of fast nonvolatile
programmablie spatial light modulators to realize fast piasticity, optical generation of random number arrays.
and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible.

The findings reported predict optoelectronic chips that can be used in the realization of optical learning

machines.

l. Introduction

Interest in neural net modelis (see, for example, Refs.
1-9) and their optical analogs (see, for example, Refs.
10-25) stems from well-recognized information pro-
cessing capabilities of the brain and the fit between
what optics can do and what even simpified models of
neural nets can offer toward the development of new
approaches to collective signal processing.

Neural net models and their analogs present a new
approach to collective signal processing that is robust,
fault tolerant, and can be extremely fast. Collective or
distributed processing describes the transfer among
groups of simple processing units (e.g., neurons), that
communicate among each other, of information that
one unit alone cannot pass to another. These proper-
ties stem directly from the massive interconnectivity
of neurons (the decision-making elements) in the brain
and their ability to store information as weights of
links between them, i.e., their synaptic interconnec-
tions, in a distributed nonlocalized manner. As a re-
sult, signal processing tasks such as nearest-neighbor
searches in associative memory can be performed in
time durations equal to a few time constants of the

The author is with University of Pennsylvania, Electrical Engi-
neering Department, Philadeiphia, Pennsylvania 19104-6390.
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decision-making elements, the neurons, of the net.
The switching time constant of a biological neuron is of
the order of a few milliseconds. Artificial neurons
(electronics or optoelectronic decision-making ele-
ments) can be made to be a thousand to a million times
faster. Artificial neural nets can therefore be expect-
ed to function, for example, as content-addressable
associative memory or to perform complex computa-
tional tasks such as combinatorial optimization which
are encountered in computational vision, imaging, in-
verse scattering, superresolution. and automated rec-
ognition from partial, (sketchy) information, extreme-
ly fast in a time scale that is way out of reach for even
the most powerful serial computer. In fact once a
neural net is programmed to do a given task it will do it
almost instantaneously. More about this point later.
As a resuit optoelectronic analogs and implementa-
tions of neural nets are attracting considerable atten-
tion. Because of the noninteracting nature of pho-
tons, the optics in these implementations provide the
needed parallelism and massive interconnectivity and
therefore a potential for realizing relatively large neu-
ral nets while the decision-making elements are real-
ized electronically heralding a possible ultimate mar-
riage between VLSI and optics.

Architectures suitable for use in the implementation
of optoelectronic neural nets of 1-D and 2-D arrange-
ments of neurons were studied and described earli-
er.'%-15 Two-dimensional architectures for optoelec-
tronic analogs have been successfully utilized in the
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recognition of objects from partial information by ei-
ther complementing the missing informatiuu or by
automatically generating correct labels of the data (ob-
ject feature spaces) the memory is presented with.2
These architectures are based primarily on the use of
incoherent light to help maintain robustness, by avoid-
ing speckle noise and the strict positioning require-
ments encountered when use of coherent light is con-
templated.

In associative memory applications, the strengths of
interconnections between the neurons of the net are
determined by the entities one wishes to store. Ideal
storage and recall occurs when the stored vectors are
randomly chosen, i.e., uncorrelated. Specific storage
recipes based on a Hebbian model of learning (outer-
product storage algorithm), or variations thereof, are
usually used to explicitly calculate the weights of inter-
connections which are set accordingly. This repre-
sents explicit programming of the net, i.e., the net is
explicitly taught what it should know. What is most
intriguing, however, is that neural net analogs can also
be made to be self-organizing and learning, i.e., become
self-programming. The combination of neural net
modeling, Boltzmann machines, and simulated an-
nealing concepts with high-speed optoelectronic im-
plementations promises to produce high-speed artifi-
cial neural net processors with stochastic rather than
deterministic rules for decision making and state up-
date. Such nets can form their own internal represen-
tations (connectivity weights) of their environment
{the outside world data they are presented with) in a
manner analogous to the way the brain forms its own
representations of reality. This is quite intriguing and
has far-reaching implications for smart sensing and
recognition, thinking machines, and artificial intelli-
gence as a whole. Our exploratory work is showing
that optics can also play a role in the implementation
and speeding up of learning procedures such as simu-
lated annealing in the context of Boltzmann machine
formalism,6-29:49 and error backpropagation® in such
self-teaching nets and for their subsequent use in auto-
mated robust recognition of entities the nets have had
a chance to learn earlier by repeated exposure to them
when the net is in a learning mode. Induced self-
organization and learning seem to be what sets apart
optical and optoelectronic architectures and process-
ing based on models of neural nets from other conven-
tional approaches to optical processing and have the
advantage of avoiding explicit programming of the net
which can be time-consuming and has come to be
referred to as the programming complexity of neural
nets.*® The partitioning scheme presented in Sec. III
permits defining input, output, and intermediate lay-
ers of neurons and any prescribed communication pat-
tern between them. This enables the implementation
of deterministic learning algorithms such as error
backprojection. However, the discussion in this paper
focuses on stochastic learning by simulated annealing
since such learning algorithms may prove to be more
hiologically plausible since they might account for the
noise present in biological neural nets as will be elabo-
rated on in Sec. [V.
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In this paper we are therefore concerned with archi-
tectures for optoelectionic implementation of neural
nets that are able to program or organize themselves
under supervised conditions, i.e., of nets that are capa-
ble of (a) computing the interconnectivity matrix for
the associations they are to learn, and (b) changing the
weights of the links between their neurons accordingly.
Such self-organizing networks have therefore the abili-
ty to form and store their own internal representations
of the entities or associations they are presented with.
In Sec. II we attempt to elucidate those features that
set neural processing apart from conventional ap-
proaches to signal processing. The ideas expressed
have been arrived at as a result of maintaining a critical
attitude and constantly keeping in mind, when en-
gaged in the study of neural net models and their
applications, the question of what is unique about the
way they perform signal processing tasks. If they
seem to perform a signal processing function well, could
the same function be carried out equally well with a
conventional processing scheme? To gain insight into
this question we were led to a comparison between
outer-product and inner-product schemes for imple-
menting associative memory. The insight gained
from this exercise points clearly to certain distinction
between neural and conventional approaches to signal
processing which will lead us to considerations of self-
programmability and learning. These are presented
in Sec. II together with a description of architectures
for optoelectronic analogs of such seif-organizing
nets. The emphasis is on stochastic supervised learn-
ing, rather than deterministic learning, and on the use
of noise to ensure that the combinatorial search proce-
dure for a global energy or cost functiou during the
learning phase does not get trapped in a local mini-
mum of the cost function. In Sec. [II a discussion of
practical considerations reiated to the implementation
of the architectures described and for accelerating the
learning process is presented. An estimate of the
speedup factor compared to serial implementation is
included. Conclusions and implications of the work
are then given. These attest to a continuing role for
optics in the implementation of artificial neural net
modules or neural chips with self-programming and
learning capabilities, i.e., to optical learning machines.

. Distinctive Features of Neural Processing

Right from the outset, when attention was first
drawn to the fit between optics and neural models, 10-1!
our investigations of optoelectronic analogs of neural
nets and their applications have perpetually kept in
view the question of what is it that neural nets can do
that is not doable by conventional means, i.e., by well-
established approaches to signal processing. Such
critical attitude is found useful and almost mandatorv
to avoid being swept into ill-conceived research en-
deavors. Itis not easy of course to see all the ramifica-
tions of a problem while one is immersed in its studyv
and solution, but a critical attitude alwavs helps to
isolate real attributes from biased ones.

Being collective, adaptive, iterative, and highlv non-
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linear, neural net models and their analogs exhibit
complex and rich behavior in their phase space or state
space that is described in terms of attractors, limit
points, and limit cycles with associated basins of at-
traction, bifurcation, and chaotic behavior. The rich
behavior offers intellectually attractive and challeng-
ing areas of research. Moreover, many be!leve that in
studying neural nets and their models we are attempt-
ing to benefit from nature’s experience in its having
arrived over a prolonged period of time, through a
process of trial and error and retainment of those per-
mutations that enhance the survivability of the organ-
ism, at a powerful, robust, and highly fault-tolerant
processor, the brain, that can serve as the model for a
new generation of computing machines. Clues and
insights gained from its study can be immensely bene-
ficial for use in artificially intelligent man-made ma-
chines that, like the brain, are highly suited for pro-
cessing of spatiotemporal multi-sensory data and for
motor control in a highly adaptive and interactive
environment.

All the above are general attributes and ohservations
that by themselves are sufficient justification for the
interest displayed in neural nets as a new approach to
signal processing and computation. To gain, however,
further specific insight in what sets neural nets apart
from other approaches to signal processing, we consid-
er a specific example. This involves comparison be-
tween two mathematicaily equivalent representations
of a neural net, one involving outer products, and the
other inner products.’! We begin by considering the
optoelectronic neural net analog described earlier!?
and represented here in Fig. 1. The iterative proce-
dure determining the evolution of the state vector v of
the pet is illustrated in Fig. 1(a) and the vector-matrix
multiplication scheme with thresholding and feedback
used to interconnect all neurons with each other
through weights set by the T,; mask is shown in Fig.
1(b). Fora net of size N with interconnectivity matrix
T,,whereT;=0,i,/=1,2 ... N, theiterative equation
for the state vector is

———
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Fig. 1. Outer-product tdistributed) storage and recall scheme.
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where the superscripts (¢) and (¢+1) designate two
consecutive iterations and sgn{-} represents the sign of
the bracketed quantity. The iteration triggered by an
externally applied initializing or strobing vector '¢'v. ¢
= (, i.e., O, continues until a steady-state vector that
is one of the nominal state vectors or attractors of the
net that is closest to ¥'v in the Hamming sense is
converged upon. At this point the net has completed a
nearest-neighbor search operation. Forsimplicity the
usual terms for the threshold 6, and external ingut [, of
the ith neuron have been omitted from Eq. (1). These
can, without loss of generality of the conclusions ar-
rived at below, be assumed to be zeru or absorbed in the
summation in Eq. (1) through the use of two additional
always-on neurons that communicate to every other
neuron in the net its th:2chold and external input
levels, through appropriate weights added to T.,.
Note in Fig. 1 that the iterated input vector is always
the transpose of the threshclded output vector.

By substituting the expression for the storage ma-
trix

M
T, = Z v, 2)
mm|
formed by summing the outer products of the stored
vectorsvi™,i=12 ... Nandm=12 ... M, into Eq.
(1) and interchanging the order of summations, we
obtain

M
‘qolv; = sg.n{? ””C.,.V‘“m} . ,3.
me]
where v
|th‘ - V v/\.muqﬁv‘ ‘4

=y
are coefficients determined by the inner product of the
input vector '9'v at any iteration by each of the stored
vectors. Equations (3) and (4) can be implemented
employing the optoelectronic direct storage and inner-
product recall scheme shown in Fig. 2 in which LEA
and PDA represent light emitting array and photode-
tector array, respectively. Noting that the two seg-
ments to the left and to the right of the diffuser in Fig. 2
are identical, one can arrive at the simplified equiva-
lent reflexive inner-product scheme shown in Fig. 3.
Now we have arrived at two equivalent implementa-
tions of the neural model. These are shown together
inFig. 4. One employs outer-product distributed stor-
age and vector-matrix multiplication with threshold-
ed feedback in the recall as shown in Fig. 4(a), and the
second employs direct storage and inner-product re-
call with thresholded feedback as shown in Fig. 4(b).
The reflexive or inner-product scheme has several ad-
vantages over the outer-product scheme. One is stor-
age capacity. While an N X N storage matrix in the
outer-product scheme can store M < N/4 InN vectors
of length N beyond which the probability of correct
recall deteriorates rapidly because of proliferation of
spurious states,’ the storage mask T,/ 1.2 ... V. m
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= 1,2... M, in the inner-product scheme can store
directly a stack of up to M = N vectors in the same size
matrix. It can be argued that the robustness and the
fault tolerance of the distributed storage scheme have
been sacrificed in the inner-product scheme, but this is
a mute argument. Robustness can be easily restored
by introducing a certain degree of redundancy in the
inner-product scheme of Fig. 4(b). This can be done,
for example, by storing a vector in more than one
location in the stack. The internal optical feedback in
the inner-product implementation is certainly another
attractive advantage. In fact the beauty of internal
feedback has inspired the concept of reflexive associa-
tive memory or nonlinear resonator CAM (content
addressable memory) shown in Fig. 5. This scheme,
which becomes possible because the T matrix is sym-
metrical, utilizes the same optics for internal feedback
and for transposing the reflected state vectors. The
scheme is perfectly suited for use with nonlinear reflec-
tor arrays or arrays of optically bistable elements.
The advantages of a similar bidirectional associative
memory have also been noted recently elsewhere.>

In view of the obvious advantages of the reflexive
scheme (Fig. 4(b)], one is led to question the reason
nature appears to prefer distributed (Hebbian) storage
[as in Fig. 4(a)] over localized storage [as in Fig. 4(b)]
besides fault tolerance and redundancy. As aresuit of
the preceding exercise the answer now comes readily to
mind: in the inner-product scheme the connectivity
matrix T,; is not present. Self-organization and learn-
ing in biological systems are associated with modifica-
tions of the synaptic weights matrix. Hence learning
in the neural sense is not possible in the inner-product
scheme. In this sense the inner-product scheme of
Fig. 4(b) is not neural but involves conventional corre-
lations between the input vectors and the stored vec-
tors. One can argue that the instant the identity of the
weights matrix T,; was obliterated the inner product
network stopped being neural as learning through
weights modification is no longer possible. We are
therefore led to conclude that distributed storage and
self-organization and learning are the most distinctive
features of neural signal processing as opposed to con-
ventional approaches to signal processing such as in
the inner-product scheme which involves simple corre-
lations and where it is not clear how seif-organization
and learning can be performed since there is no T,
matrix to be modified.

Neural net processing has additional attractive fea-
tures that are not as distinctive as self-organization
and learning. These include heteroassociative storage
and recall where the same net performs the functions
of storage, processing, and labeling of the output (final
state) simultaneously. While such a task may also be
realized with conventional signal processing nets, each
of the above three functions must however be realized
separately in a different subnet. A striking example of
this feature reported recently® is in the area of radar
target recognition from partial information employing
sinogram representation of targets of interest. The
sinogram representations were used in computing and
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setting the synaptic weight matrix in an explicit learn-
ing mode. Recognition in radar from partial informa-
tion is tantamount to solution of the superresolution
problems. The ease and elegance with which the neu-
ral net approach solves this classical problem is, to say
the least, impressive.

Other distinctive features of neural nets associated
with the rich phase-space behavior are bifurcation and
chaotic behavior. These were mentioned earlier but
are restated here because of their importance in se-
quential processing of data (e.g., cyclic heteroassocia-
tive memory) and in the modeling and study of mental
diaorger and the effect of drugs on the nervous sys-
tem.

In preceding work on optical analogs of neural
nets,!%-25 the nets described were programmed to do a
specific computational task, namely, a nearest-neigh-
bor search that consisted of finding the stored entity
that is closest to the address in the Hamming sense.
As such the net acted as a content addressable associa-
tive memory. The programming was done by first
computing the interconnectivity matrix using a Heb-
bian (outer-product) recipe given the entities one
wished the net to store, followed by setting the weights
of synaptic interconnections between neurons accord-
ingly.

In this section we are concerned with architectures
for optoelectronic implementatiop of neural nets that
are able to program or organize themselves under su-
pervised conditions. Such nets are capable of (a) com-
puting the interconnectivity matrix for the associa-
tions they are to learn, and (b) changing the weights of
the links between their neurons accordingly. Such
self-organizing networks therefore have the ability to
form and store their own internal representations of
the associations they are presented with. The discus-
sioaxi in this section is an expansion of one given earli-
er.

Multilayered self-programming nets have recently
been attracting increasing attention.$28-30.35 For ex-
ample, in Ref. 28 the net is partitioned into three
groups, two are input and output groups of neurons
that interface with the net environment and the third
is a group of hidden or internal units that acts as a
buffer between the input and output units and partici-
pates in the process of forming internal representa-
tions of the associations the net is presented with.
This can be done, for example, by clamping or fixing
the states of neurons in the input and output groups to
the desired pairs of associations and letting the net run
through its learning algorithm to arrive ultimately at a
specific set of synaptic weights or links between the
neurons. No neuron or unit in the input group is
linked directly to a neuron in the output group and vice
versa. Any such communication must be carried out
via the hidden units. Neurons within the input group
can communicate among each other and with hidden
units and the same is true for neurons in the output
group. Neurons in the hidden group cannot commu-
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Fig. 6. Optoelectronic analog of self-organizing neural net parti-
tioned into three layers capable of stochastic self-programming and
learning.

nicate among each other. They can only communicate
with neurons in the input and output groups as stated
earlier.

Two supervised learning procedures in multilayered
nets have recently attracted attention. One is sto-
chastic, involving a simulated annealing process,*6-"
and the other is deterministic, invoiving an error back-
propagation process.’® There is general agreement,
however, that because of their iterative nature, se-
quential computation of the weights using these algo-
rithms is very time-consuming. A faster means for
carrying out the ;equired computations is needed.
Nevertheless, the work mentioned represents a mile-
stone in that it opens the way for powerful collective
computations in multilayered neural nets and the par-
titioning concept dispels earlier reservations3® about
the capabilities of early singie layered models of neu-
ral nets such as the Perceptron.’” The partitioning
feature and the ability to define input and output
neurons may also be the key for realizing meaningful
interconnection between neural modules for the pur-
pose of performing higher-order hierarchical process-
ing.

Optics and optoelectronic architectures and tech-
niques can play an important role in the study and
implementation of self-programming networks and in
speeding up the execution of learning algorithms.
Here we describe a method for partitioning an opto-
electronic analog of a neural net to implement a multi-
layered net that can learn stochastically by means of a
simulated annealing learning algorithm in the context
of a Boltzmann machine formalism (see Fig. 6). The
arrangement shown in Fig. 6 derives from the neural
network analogs we described earlier.!? The network.
consisting of, say, N neurons, is partitioned into three
groups. Twogroups, V) and V,, represent visible units
that can be viewed as input and output groups, respec-
tively. The third group H are hidden or internal units.
The partition is such that Ny + No + N3 = N, where N,
N5, and Njrefer to the number of neurons in the V, V>,
and H groups, respectively. The interconnectivity
matrix, T,j, is partitioned into six submatrices, A, B, C.
D, E, F, and three zero-valued submatrices shown as
blackened or opaque regions of the T, mask. The
LED array represents the state of the neurons. as-
sumed to be unipolar binary (LED on = neuron firing,
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LED off = neuron not firing). The T,, mask repre-
sents the strengths of interconnection between neu-
rons in a manner similar to earlier arrangements.!?
Light from each LED is smeared vertically over the
corresponding column of the T,; mask with the aid of
an anamorphic lens system (not shown in Fig. 6), and
light emerging from each row of the mask is focused
with the aid of another anamorphic lens system (also
not shown) onto the corresponding elements of the
photodetector (PD) array. The same scheme utilized
in Ref. 12 for realizing bipolar values of T;; in incoher-
ent light is assumed here, namely, separating each row
of the T;; mask into two subrows and assigning posi-
tive-valued T;; to one subrow and negative-valued T;;
to the other, and focusing light emerging from the two
subrows separately on two adjacent photosites on the
photodetector array connected in opposition. Subma-
trix A, with Ny X N, elements, provides the intercon-
nection weights between units or neurons within group
V:. Submatrix B, with N; X N; elements, provides the
interconnection weights between units within V5.
Submatrices C (with N| X N3 elements) and D (with V3
X N, elements) provide the interconnection weights
between units of V) and H and submatrices E (with NV,
X N3 elements) and F (with N3 X N; elements) provide
the interconnection weights of units of V; and H.
Units in V; and V; cannot communicate among each
other directly because locations of their interconnecti-
vity weights in the T;; matrix or mask are blocked out
(blackened lower left and top right portions of T;;).
Similarly units within H do not communicate among
each other because locations of their interconnectivity
weights in the T;; mask are also blocked out (blackened
center square of T;;). The LED element 4 is of graded
response. [tsoutputrepresents the state of an auxilia-
ry neuron in the net that is always on to provide a
global threshold level to all units by contributing only
to the light focused onto negative photosites of the
photodetector (PD) arrays from pixels in the G column
of the interconnectivity mask. This is achieved by
suitable modulation of the transmittance of pixels in
the G column. This method for introducing the
threshold level is attractive, as it allows for providing
to all neurons in the net a fixed global threshold, an
adaptive global threshold, or even nosiy giobal thresh-
old if desired.

By using a computer-controlled nonvolatile spatial
light modulator to implement the T,; mask in Fig. 6
and including a compute: controller as shown, the
scheme can be made self-programming with ability to
modify the weights of synaptic links between its neu-
rons. This is done by fixing or clamping the states of
the V| (input) and V> (output) groups to each of the
associations we want the net to learn and by repeated
application of the simulated annealing procedure with
Boltzmann, or other stochastic state update rule, and
collection of statistics on the states of the neurons at
the end of each run when the net reaches thermody-
namic equilibrium.

Stochastic learning by simulated annealing in the
partitioned net proceeds as follows:
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(1) Starting from an arbitrary T,, clamp V, and V.
to the desired association keeping H free running.

(2) Randomly select a neuron in H, say the kth
neuron, and flip its state [recall we are dealing with
binary (0,1) neurons].

(3) Determine the change AE, in global energy E of
the net caused by changing the state of the kth neuron.

(4) If AE, <0, adopt the change.

(5) If AE, > 0, do not discard the change outright
but calculate first the Boltzmann probability factor,
-AE,

—

and compare the outcome to a random number .V, ¢
{0,1). If P, > N,, adopt the change of states of the kth
neuron even if it leads to an energy increase (i.e., AE, >
0). If P. < N,, discard change, i.e., return the kth
neuron to its original state.

(6) Once more select a neuron in H randomly and
repeat steps (1)-(5).

(7) Repeatsteps (1)-(6) reducing at every round the
temperature T gradually [e.g., T = To/log(l + m),
where m is the round number, cooling schedule is fre-
quently used to ensure convergence] until a situation is
reached where changing states of neuron in H does not
alter the energy E, i.e., AE, —~0. Thisindicates a state
of thermodynamic equilibrium or a state of global en-
ergy minimum has been reached. The temperature T
determines the fineness of search for a global mini-
mum. A high T produces coarse search and low T a
finer grained search.

(8) Record the state vector at thermodynamic equi-
librium, i.e., the states of all neurons in the net, i.e.,
those in H and those in V, and V> that are clamped.

{9) Repeat steps (1)—(8) for all other association on
V,and V, we want the net to learn and collect statistics
on the states of all neurons by storing the states at
thermodynamic equilibrium in computer memory as
in step (8). This completes the first phase of exposing
the net to its environment.

(10) Generate the probabilities P, of finding the /th
neuron and the jth neuron in the same state. This
completes phase I of the learning cycle.

(11) Unclamp neurons in V- letting them run free as
with neurons in H.

(12) Repeat steps (1)-(10) for all input vectors V;
and collect statistics on the states of all neurons in the
net.

(13) Generate the probabilities P of finding neuron
i and neuron j in the same state.

(14) Increment the current connectivity matrix T,
by AT,; = ¢(P,; — P;) where ¢ is a constant representing
and controlling the speed of learning. This completes
phase II of the learning cycle.

(15) Repeat steps (1)-(14) again and again until the
increments AT, tend to zero, i.e., become smaller than
some prescribed small number. At this point the netis
said to have captured the underlying structure or
formed its own representations of its environment de-
fined by the associations presented to it. We are now
dealing with a learned net.

P, = exp (5)
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One can make the following observations regarding
the above procedure:

The search for state of global energy minimum is
basically a gradient descent procedure that allows for
probabilistic hill climbing to avoid entrapment in a
state of local energy minimum. The relative probabil-
ity of two global states x and § is given by the Boitz-
mann distribution P,/P; = exp {—(E, — E;3)/T}, hence
the name Boltzmann machine.?® Therefore the lowest
energy state is the most probable at any temperature
and is sought by the procedure.

Unlike explicit programming of a neural net where
lack of correlation among the stored vectors is a pre-
requisite for ideal storage and recall, self-program-
ming by simulated annealing has no such requirement.
In fact learning by simulated annealing in a Boltzmann
machine looks for underlying similarities or correla-
tions in the training set to generate weights that can
make the net generalize. Generalization is a property
where the net recognizes an entity presented to it even
though it was not among those specifically used in the
learning session. Learning is thus not rote.

The final T;; reached represents a net that has
learned its environment by itself under supervision,
i.e., it has formed its own internal representations of its
surroundings. Those environmental states or input/
output associations that occur more frequently will
influence the final T;; more than others and hence form
more vivid impressions in the synaptic memory matrix
T,'j.
The learning procedure is stochastic but is still basi-
cally Hebbian in nature where the change in the synap-
tic interconnection between two units (neurons) de-
pends on finding the two units in the same state
(sameness reinforcement rule).

Evidently, being stochastic in nature (invoiving
probabilistic state transition rules and simulated an-
nealing) the learning procedure is lengthy (taking
hours in a digital simulation for nets of a few tens to a
few hundred neurons). Hence, speeding up the pro-
cess by using analog optoelectronic implementation is
highiy desirable.

Stochastic learning consists of two phases: phase |
involves generating probabilities P,; when the input
and output of the net are specified. Phase II involves
generating the probabilities P; when only the input is
specified while the rest of the net is free running fol-
lowed by computing the weight increments and modi-
fying the T,; matrix accordingly.

IV. Accelerated Leaming

Stochastic learning by the simulated annealing pro-
cedure we described was originally conceived for serial
computation. When dealing with parallel aptical
computing systems it does not make sense to exactly
follow a serial algorithm. Modifications that can take
advantage of the available parallelism of optics to
speed up stochastic learning are therefore of interest.
In this section we discuss several such modifications
that offer potential for speeding-up stochastic learning
in optoelectronic implementations by several orders of

magnitugie compared to serial digital implementation.
Learning by simulated annealing requires calculat-
ing the energy E of the net,"38

E= % Z uv, 6)

where v; is the state of the ith neuron and

u,»-ZT‘ivj—al-d»I‘ N
Jest

is the activation potential of the ith neuron with §; and
I; being the threshold level and external input to the
i-th neuron respectively and the summation term rep-
resenting the input to the i-th neuron from all other
neurons in the net. By absorbing ; and I; in the
summation term as described earlier, Eq. (7) can be
simplified to

o=>Tyv. 8
A simple analog circuit for calculating the contribu-
tion E; of the ith neuron to the global energy E of the
net is shown in Fig. 7(a). Here the product of the
activation potential of the ith neuron and the state v, of
the ith neuron is formed to obtain E; which is then
added to all terms formed similarly in parallel for all
other neurons in the net. Although VLSI implemen-
tation of such an analog circuit for parallel calculation
of the global energy is feasible, this becomes less at-
tractive as the number of neurons increases because of
the interconnection problem associated with the large
fan-in at the summation element.
A simplified version of a rapid scheme for obtaining
E optoelectronically is shown in Fig. 7. The scheme
requires the use of an electronically addressed nonvol-
atile binary (on—off) spatial light modulator consisting
of a single column of N pixels. A suitable candidate is
a parallel addressed magnetooptic spatial light modu-
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Fig. 7. Two schemes for parallel computing of the global energy in
an optoeelectronic analog of a multilavered seif-orgamizing net: (a)
electronic scheme: (b} optoelectronic scheme.
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lator (MOSLM) consisting of a single column of N
pixels that are driven electronically by the same signal
driving the LED array to represent the state vector v of
the net. A fraction of the focused light emerging from
each row of the T, mask is deflected by the beam
splitter (BS) onto the individual pixels of the column
MOSLM such that light from adjacent pairs of su-
brows of T;; falls on one pixel of the MOSLM. The
MOSLM pizels are overlaid by a checkered binary
mask as shown. The opaque and transparent pixels in
the checkered mask are staggered in such a fashion
that light emerging from the left subcolumn will origi-
nate from the positive subrows T} of T;; only and light
emerging from the right subcolumn will originate from
the negative subrows T/ or T;;. By separately focusing
the light from the left and right subcolumns as shown
onto two photodetectors and subtracting and halving
their outputs, one obtains

e--33[( )]
i ]
- —%Z zTi,'l-) - -‘;’z wy;, (9

which is the required global energy.

The learning procedure detailed in Sec. [II requires
fast random number generation for use in random
drawing and switching of state of neurons from H
(during phase I of learning) and from H and V; (during
phase II of learning). Another random number is also
needed to execute the stochastic state update ruie
when AE, > 0. Although fast digital pseudorandom
number generation of up to 10°3~! is feasible®® and can
be used to heip speed up digital simulation of the
learning algorithm, this by itself is not sufficient to
make a large impact especially when the total number
of neurons in the net is large. Optoelectronic random
number generation is also possibie although at a slower
rate of 10° s. Despite the slower rate of generation,
optoelectronic methods have advantages that will be
elaborated on below. An optoelectronic method for
generating the Boltzmann probability factor p(AE,)

COMPY TRA:
COmMTROLLEA
MTERSACK
YO MOM.40Y
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[see Eq. (5)] employing speckle statistics is described
in Ref. 40 and optical generation of random number
arrays by photon counting image acquisition systems
or clipped laser speckle have also been recently de-
scribed.#1+ These photon counting image acquisi-
tion systems have the advantage of being able to gener-
ate normalized random numbers with any probability
density function. A more important advantage of op-
tical generation of random number arrays however is
the ability to exploit the parallelism of optics to modify
the simulated annealing and the Boltzmann machine
formalism detailed above to achieve significant im-
provement in speed. As stated earlier, with parallel
optical random number generation, a spatially and
temporally uncorrelated linear array of perculating
light spots of suitable size can be generated and imaged
on the photodetector array (PDA) of Fig. 6 such that
both the positive and negative photosites of the PDA
[see also Fig. 7(a)] are subjected to random irradiance.
This introduces a random (noise) component in 4; and
I; of Eq. (7) which can be viewed as a bipolar noisy
threshold. The noisy threshold produces in turn a
noisy component in the energy in accordance with Eq.
(6). The magnitude of the noise components can be
controlled by varying the standard deviation of the
random light intensity array irradiating the PDS.
The noisy threshold therefore produces random con-
trolled perturbation or shaking of the epergy land-
scape of the net. This helps shake the net loose when-
ever it gets trapped in a local energy minimum. The
procedure can be viewed as generating a controlled
deformation or tremor in the energy landscape of the
net to prevent entrapment in a local energy minimum
and thereby ensure convergence to a state of global
energy minimum. Both the random drawing of neu-
rons (more than one at a time is now possible) and the
stochastic state update of the net are now done in
parallel at the same time. This leads to significant
acceleration of the simulated annealing process. The
parallel optoelectronic scheme for computing the glob-
al energy described earlier [see Fig. 7(b)] can be used to
modulate the standard deviation of the optical random
noise array used to produce a noisy threshold with a
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function of the instantaneous global energy E and/or
itstime rate change dE/d¢t. Inthis fashion an adaptive
noisy threshold scheme can be realized to control the
tremors in the energy landscape if necessary. The
above discussion gives an appreciation of the advan-
tages and flexibility of using optical random array
generators in making the net rapidly find states of
global energy minimum. No attempt is made here to
estimate in detail the speed enhancement over digital
execution of the simulated annealing process as this
will be dependent on the characteristics of the light
emitting array, the photodetector array, the spatial
light modulator, and the speed of the computer—con-
troller interface used. Nevertheless, the enhancement
over digital serial computation can be significant, ap-
proaching 5-6 orders of magnitude especially for rela-
tively large mulitilayer nets consisting of from a few
tens to a few hundred neurons. A recent study of
learning in neuromorphic VLSI systems in the context
of a modified Boltzmann machine gives speedup esti-
mates of 108 over serial digital simulations.

V. Optoelectronic Neurai Chip

The discussion in the preceding sections shows that
optical techniques can simplify and speedup stochas-
tic learning in artificial neural nets and make them
more practical. The attractiveness and practicality of
optoelectronic analogs of self-programming and learn-
ing neural nets are enhanced further by the concept of
optoelectronic neural chips presented in Fig. 8. The
embodiments shown rely heavily on the use of comput-
er or microprocessor interfaced spatial light modula-
tors and photodetector arrays. The figure shows how
the free-space anamorphic lens system in the top left
embodiment can be replaced by a single photodetector
array with horizontal strip elements that spatially in-
tegrate the light emerging from rows of MOSLM 2
(lower right embodiment). MOSLM 2 represents the
T.;mask of Fig. 6. Each column MOSLM 1 is uniform-
ly activated by the computer controller. This replaces
the function of the anamorphic lens system that was
needed in Fig. 6 to smear the light from the LED array
vertically onto the elements of the T, mask. The
optoelectronic neural chip represents a neural module
operating in an ambient light environment as com-
pared with a biological neural module operating in a
chemical environment. The chip thus derives some of
its operating energy from the ambient light environ-
ment.

VI. Discussion

The architecture described here for partitioning a
neural net can be used in hardware implementation
and study of self-programming and learning algo-
rithms such as, for example, the simulated annealing
algorithm outlined here. The parallelism and massive
interconnectivity provided through the use of optics
should markedly speed up learning even for the simu-
lated annealing algorithm, which is known to be quite
time-consuming when carried out on a sequential ma-
chine. The partitioning concept described is also ex-

tendable to multilayered nets of more than three lavers
and to 2-D arrangement of synaptic inputs to neurons,
as opposed to the 1-D or lineal arrangement described
here. Other learning algorithms calling for a multilay-
ered architecture such as the error backprojection al-
gorithm?® and its coherent optics implementation*
can also now be envisioned optoelectronically employ-
ing the partitioning scheme described here.

Learning algorithms in layered nets lead to analog or
multivalued T;;. Therefore high-speed computer-
controlled SLMs with graded pixel response are called
for. Methods of reducing the needed dynamic range
of T; or for allowing the use of ternary T,; are however
under study to enable the use of commercially avail-
able fast nonvolatile binary SLM devices such as the
Litton/Semetex magnetooptic SLM (MOSLM).#%6 A
frame switching time better than 1/1000 s has been
demonstrated recently in gur work on a 48 X 48 pixel
device by employing an external magnetic field bias.
It is worth noting that the role of optics in the architec-
ture described not only facilitates partitioning the net
into groups or layers but also provides the massive
interconnectivity mentioned earlier. For example, for
a neural net with a total of N = 512 neurons, the optics
enable making 2V? = 2,62 X 10 programmable weight-
ed interconnections among the neurons in addition to
the 4N = 2048 interconnections that would be needed
in Fig. 6(b) to compute the energy E.

Assuming that material and device requirements of
the architectures described can be met and partitioned
self-organizing neural net modules will be routinely
constructed, the addition of such a module to a com-
puter controller through a high speed interface can be
viewed as providing the computer controller with arti-
ficial intelligence capabilities by imparting to it neural
net attributes. These capabilities include seif-organi-
zation, self-programmability and learning, and asso-
ciative memory capability for conducting nearest-
neighbor searches. Such attributes would enable a
small computer to perform powerful computational
tasks of the kind needed in pattern recognition. and in
the solution of combinatorial optimization problems
and ill-posed problems encountered, for example, in
inverse scattering and vision, which are confined at
present to the domain of supercomputers.

A central issue in serial digital computation of com-
plex problems is computational complexity.*" Pro-
gramming a serial computer to perform a complex
computational task is relatively easy. The computa-
tion time however for certain problems, especially
those dealing with combinatorial searches and combi-
natorial optimization, can be extensive. Inneurainets
the opposite is true. They take time to program [for
example, computation of the interconnectivity matrix
of synaptic weights by outer product or correlation
(Hebbian rule) and setting the weights accordingly].
Once programmed, however, they perform the compu-
tations required almost instantaneously. This fact is
one of the first attributes noted when working with
neural nets and has recently been elaborated on.*

Self-organization and learning entails the net deter-
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mining by itself the weights of synaptic interconnec-
tions among its neurons that represent the association
it is supposed to learn. In other words, the net pro-
grams itself, thereby alleviating the programming
complexity issue. One can envision nets that learn by
example when the associations the net is supposed to
learn are presented to it by an external teacher in a
supervised learning mode. This leads naturaily to the
more intriguing question of unsupervised learning in
such nets and analog implementations of such learn-
ing.
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ferent steering angles, but an optimal weight distnibution can be (8] H.Barrettetal., "Optical Boltzmann machines  post-deadhine
computed for each steering angle. From the simulation result, it paper. OSA Topical Meeting on Optical Computing, Incune
15 seen that the optimum far-tieid pattern has similar teatures to Village. NV, 1985,

the pattern given by the Doiph-Chebyshev distribution tunction.
in the Oolph-Chebyshev pattern, all the sidelobes have the same
level for a specitied beamwidth. A numerical example in {1} shows
an 8-element array telement separation d = 0.5N\) with 25.8(dB)
sidelobe Jevel and 40.8° beamwidth. The optimum pattern given
by our simulation shows nearly equal level sidelobes which are
minimized for the given beamwidth.

™ W o~ ——

V. DisCussion

Simulated annealing (s a modification of the iterative improve-
ment algorithm (4). It is physically more meaningful and can be
computed more systematically than the iterative improvement (4],

Physically, the simulated annealing process is analogous to the
[ cooling of melt in crystal growth: careful annealing produces a
defect-free crystal, rapid annealing produces a defective crystal or
glass {3]. The probabilistic treatment with the probability function
PAE) = exp (—AEKT) provides a way to accept the unfavorable
changes and is easy to compute. From our simulation, it has been
found that the simulated annealing algorithm seems aiways to give
) better performance than the iterative improvement algorithm.
! Since simulated annealing is a modified iterative improvement

process, it takes a relatively long time to do an optimization prob-
lem just as iterative impravement does in a computer calculation.
The phased-array synthesis in our simulation runs for 1 h or so for
an array of 41 elements on a MICRO PDP-11 computer. Finding an
efficient scheme to reduce the excessive amounts of computer hime
for most optimization problems has always been of concern [5])-
[7). Otherwise. if enough computation power is available, iterative
improvement can be run from random starts tor many times to
approach the optimum state. Fast optodigital computing schemes
similar to those described in [8] may also be considered for phased-
array synthesis bv simulated annealing. It 1s understood that the
far field is the Founer transform ot the arrav distribution tunction
An optical lens can be used for computing the Fourier transform
as the distribution function is inputted to the front tocal plane ot
the Jens via, for example, an appropriate computer-driven spatial
light moduiator (SLM). The Fourier transtorm in the back focal plane
can oe recorded and fed to the computercontroller to make the
simulated annealing decision. The outcome 1s tedback to the SL™
to change the distnibution tunction 1n the tront focal plane. The
hvbrid optodigital scheme will do the Fourter transtorm instantly.
In this fashion. the computation associated with the Fourier trans-
form can be virtually eliminated assuming a high-speed SLM and
computer interface are utilized. An optoelectronic Boltzmann
machine tor accelerating the selection rule has aiso been proposed
earlier in [8]. This process can be repeated tor each step in sim-
ulated annealing. Also, a Cauchy probabuility sefection rule, instead
otthe Boltzmann selection rule, can be used to speed up the whole
anneafing process turther (7].
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ARCHITECTURES AND METHODOLOGIES FOR SELF-ORGANIZATION AND STOCHASTIC
LEARNING IN OPTO-ELECTRONIC ANALOGS OF NEURAL NETS
N.H. Farhat, and Z.Y. Shae
University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6390

Abstract

Self-organization and learning is a distinctive feature of neural nets
and processors that sets them apart from conventional approaches to signal
processing. It leads to self-programmability which alleviates the problem
of programming complexity in artificial neural nets. We have devised
architectures for partitioning an opto-electronic analog of a neural net
into distinct layers with prescribed inter-connectivity pattern to enable
stochastic learning by simulated annealing in the context of a Boltzmann
machine. Stochastic learning is of interest because of its relevance to
the role of noise in biological neural nets. It can shed light on the way
nature has turned noise present in biological nets to work to its advantage.
Practical considerations and methodologies for appreciably accelerating
stochastic learning in such a multi-layered net are also described. These
include the use of parallel optical computation of the energy of the net,
the use of fast nonvolatile programmable spatial light modulators to realize
fast "plasticity", optical generation of random number arrays, and a noisy
thresholding scheme that makes stochastic learning more biologically plaus-
ible and does not require determining the energy of the net for the
annealing schedule.

1. INTRODUCTION

Interest in neural network models (see for example, [1]-[9]) and their
optical analogs (see for example [10]-[21]) stems from well recognized
information processing capabilities of the brain and the fit between what
optics can do and what even simplified models of neural nets can offer
toward the development of new approaches to collective signal processing
that are robust, fault tolerant and can be extremely fast.

As a result opto-electronic analogs and implementations of neural nets
are attracting today considerable attention. The aptics in these imple-
mentations provide the needed parallelism and massive interconnectivity and
therefore a potential for realizing relatively large neural nets while the
decision making elements are realized electronically heralding a possible
ultimate marriage of VLSI and optics.

Architectures suitable for use in the implementation of opto-electronic
neural nets of one-dimensional and two-dimensional arrangements of neural
nets have been studied and described recently [11]-[14]. Two-dimensional
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architectures for opto-electronic analogs of neural nets have been success-
fully used in the recognition of objects from partial information by either
complementing the missing information or by automatically generating correct
labels of the data (object feature spaces) the memory is presented with [22].

In associative memory applications, the strength of interconnection
between the "neurons" of the net is determined by the entities one wishes
to store in the net. Specific storage "recipes" based on a Hebbian model
of learning (outer-product storage algorithm) or variations thereof are
usually employed. In that sense the memory is taught what is should know
and be cognizant of. What can be of great utility however, is that neural
nets can also be made to be self-organizing and learning i.e., to become
self~programming. The combination of neural nets, Boltzmann machines, and
simulated annealing concepts with high speed opto-electronic implementations
promise to produce high-speed artificial neural net processors with stochas-
tic rather than deterministic rules for decision making and state update
that can form their own internal representations (connectivity weights) of
their environment, the outside world data they are presented with, in a
manner very analogous to the way the brain forms its own symbolic repre-
sentations of reality. This is quite intriguing and has far reaching
implications for smart sensing and recognition, thinking machines, and
artificial intelligence as a whole, Our exploratory work is showing that
optics can also play a role in the implementation and speeding up of
learning algorithm (such as simulated annealing in the context of a
Boltzmann machine formalism [23]-[26] and error back propagation [27]) in
such self-teaching nets and for their subsequent use in automated robust
recognition of entities the nets have had a chance to learn earlier by
repeated exposure to them when in a learning mode. Self-organization and
learning seems to be what sets apart optical and opto-electronic
architectures and processing based on models of neural nets from other
conventional approaches to optical processing.

In this paper we are therefore first concerned with architectures for
opto-electronic implementation of neural nets that are able to program or
organize themselves under supervised conditions, i.e., of nets that are
capable of (a) computing the interconnectivity matrix for the associations
they are to learn, and (b) of changing the weights of the links between
their neurons accordingly. Such self-organizing networks have therefore
the ability to form and store their own internal representations of the
entities
or associations they are presented with. We are also concerned with
stochastic learning in such nets and with methodologies for accelerating
the learning process. These include a novel noisy threshold scheme that
can speed up the simulated annealing process in opto~electronic analogs of
neural nets. Results of computer simulations demonstrating capabilities of
annealing with the noisy thresholding are presented.

2. PARTITIONING ARCHITECTURES AND STOCHASTIC LEARNING
Multi-layered self-programming nets have been described recently, [25},

(26], where the net is partitioned into three groups. Two are groups of
visible or external input/output units or neurons that interface with the
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net environment or surroundings. The third is a group of hidden or internal
units that separates the input and output units and participates in the
process of forming internal representations of the associations the net is
presented with, as for example by "clamping” or fixing the states of the
input and output neurons to the desired associations and letting the net
run through its learning algorithm to arrive ultimately at a specific set
of synaptic weights or links between the neurons that capture, after many
iterations of the process, the underlying structure of all the associations
presented to the net. The hidden units or neurons prevent the input and
output units from communicating with each other directly. In other words
no neuron or unit in the input group is linked directly to a neuron in the
output group and vice-versa. Any such communication must be carried out
via the hidden units. Neurons within the input group do not communicate
with each other. They can only communicate with neurons in the input and
output groups as stated earlier.

As an example of the continuing role for optics, we describe next a
concept for partitioning an opto-electronic analog of a neural net into
input, output, and internal units with the selective communication pattern
described above in order to realize a multi-layered net analog capable of
stochastic learning, by means of a simulated annealing learning algorithm
in the context of a Boltzmann machine formalism (see Fig. 1(a)). The
arrangement shown derives from the neural network analogs we described
earlier [11]. The network, consisting of say N neurons, is partitioned
into three groups. Two groups, V; and V;, represent visible or exterior
units that can be used as input and output units respectively. The third
group H are hidden or internal units. The partition is such that Nj+N;+N3=N
where subscripts 1, 2, 3 on N refer to the number of neurons in the Vi, V,
and H groups respectively. The interconnectivity matrix, designated here as
wij: is partitioned into nine submatrices, A, B, C, D, E, and F plus three
zero submatrice shown as blackened or opaque regions of the Wi3 mask. The
LED array represents the state of the neurons, assumed to be unipolar binary
(LED on = neurons firing, LED off = neuron not-firing). The Wij mask repre-
sents the strengths of interconnection between neurons in a manner similar
to earlier arrangements [11]}. Light from the LEDs is smeared vertically
over the Wi; mask with the aid of an anamorphic lens system (not shown in
Fig. 1(a)) and light emerging from rows of the mask is focused with the aid
of another anamorphic lens system (also not shown) onto elements of the
photodetector (PD) array. Also we assume the same scheme utilized in [11)
for realizing bipolar values of Wjj in incoherent light 1is adopted here,
namely by separating each row of the wij mask into two subrows and assigning
positive values of wtj to one subrow and negative values W§j to the other,
then focusing light emerging from the two subrows separately onto pairs of
adjacent photosites connected in opposition in each of the V;, V, and H
segments of the photodetector array. Submatrix A,with NixN) elements, pro-
vides the interconnection weights of units or neurons within group Vj.

Submatrix B,with NoxN, elements, provides the interconnection weights of
units within V;. Submatrices C (of NjxN3 elements) and D (of N3xN; ele-
ments) provide the interconnection weights between units of V; and H and
similarly submatrices E (of NyxN3 elements) and F (of N3xnj) provide the
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interconnection weights of units V, and H. Units in Vj and Vy can not
communicate with each other directly because locations of their interconnec-
tivity weights in the wij matrix or mask are blocked out (blackened lower
left and top right portion of wij). Similarly units within H do not commu-
nicate with each other because locations of their interconnectivity weights
in the wij mask are also blocked out (center blackened square of wij). The
LED element © can be of graded response. It can be viewed as representing
the state of an auxiliary neuron in the net that is always on to provide a
threshold level to all units by contributing to the light focused onto only
negative photosites of the PD arrays by suitable modulation of pixels in
the G column of the interconnectivity mask. This method for introducing

the threshold level is attractive as it allows for introducing a fixed
threshold (fixed ©-LED output) to all neurons or an adaptive threshold if
desired. The threshold is global when the transmittances of pixels in G are
fixed and the © LED level in controlled. The threshold is local if the

© LED output is fixed and the pixel transmittances are allowed to vary.

\IASK

/
S MOSLM
. A .,
N

{b) €

INTERCONNEC -
TIVITY MASK

Fig 1. Architecture for opto-electronic analog of layered self-programming
net. (a) partitioning concept and, (b) arrangement for rapid
determination of the net's global energy E for use in learning
by simulated annealing.

We have described elsewhere in some detail [28], how by using a computer
controlled nonvolatile spatial light modulator to implement the Wjj mask
in Fig. 1(a) and including a computer/controller as shown and by repeated
application of the simulated annealing procedure with Boltzmann or other
stochastic state update rule and collection of co-occurance statistics on
the states of the neurons at the end of each run when the net reached
thermodynamic equilibrium, the scheme can be made se.f-programming with
ability to modify the weights of synaptic links between its neurons to form
internal representations of the input/output associations or patterns
presented to it.
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3. ACCELERATED LEARNING

The stochastic learning by simulated annealing procedure was originally
conceived for serjial computation. When dealing with parallel optical
computing systems of the kind we described, it does not make sense to
strictly adhere to a serial algorithm. Modifications that can take
advantage of the available parallelism of optics to speed up stochastic
learning should be considered. In this section we offer several such
modifications that can markedly speed-up stochastic learning in
opto-electronic implementations as compared to serial digital
implementation.

Learning by simulated annealing requires calculating the energy E, of
the net [7]1,(29],

1
E=—22uisi 1)
i
where sj is the state of the i~th neuron and
u, = ) W..v. -0, +1
i 31 ij 3 i i (2)

is the activation potential of the i-th neuron, with ©; iand I; being
respectively the threshold level and external input of the i-th neuron.
Equation (2) can be written in the form,

u=ZWs
17,5 "% (3

by absorbing €3 and Ij in the weight matrix wij- This can be done by adding
a G column to the wig matrix to furnish ©; as described earlier. A similar
procedure can be used to furnish Ij by adding another column with transmit-~
tances proportional to I; whose light transmittance is focused onto the
positive photosites of the photodetector array in Fig. 1(a). The above
method of introducing ©; and I; suggests also that random (noise) components
of both €4 and I; can be introduced by focusing a random array of light
spots, whose intensities are allowed to vary randomly and independently
with time, directly onto the positive and negative photosites of the PD
array of Fig. l(a). In this fashion deterministic and random composition

of Gi and I can be realized. Taken together, the random components

of ©; and I can be viewed as random bipolar noisy threshold. We

will return to this point later in our discussion of annealing with noisy
threshold.

A simplified version of a rapid scheme for obtaining E opto-elec-
tronically is shown in Fig. 1(b). The scheme requires the use of an
electronically addressed nonvolatile binary (on-off) spatial light modu-
lator consisting of a single column of N pixels. A suitable candidate is a
parallel addressed magneto-optic spatial light modulator (MOSLM) [30], in
particular one consisting of a single column of N pixels that are driven
electronically by the same signal driving the LED array in order to
represent the state vector s of the net. A fraction of the focused light
emerging from each row of the wij mask is deflected by the beam splitter BS
onto the individual pixels of the column MOSLM such that light from adjacent
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pairs of subrows of wij fall on one pixel of the MOSLM. The MOSLM pixels
are overlayed by a checkered binary mask as shown. The opaque and trans-
parent pixels in the checkered mask are staggered in such a fashion that
light emerging from the left subcolumn will originate from the positive
subrovs wtj of wij only and light emerging from the right subcolumn will
originate from the negative subrows Wij of wij. By separately focusing the
light from the left land right subcolumns as shown onto two photodetectors
and subtracting and halving their outputs one obtains,

1 1
which is the required global energy.
Stochastic learning by simulated annealing in the opto-electronic neural
net analogs of Fig. 1 requires, as detailed elsewhere [28], fast random
number generation for use in random drawing and switching of state of
neurons from H and from H and V,. Another random number is also needed
to execute the stochastic state update rule, Although fast digital
pseudo-random number generation of up to 109 [sec'l] is feasible [31])
and can be used to help speed up digital simulation of the learning
algorithm, this by itself is not sufficient to make a large impact
specially when the total number of neurons in the net is large.
Opto-electronic random number generation is also possible although at a
slower rate of about 107 [sec]. Despite the slower rate of generation,
opto-electronic methods have advantages that will be elaborated upon
below. An opto-electronic method for generating the Boltzmann probability
factor needed in the simulated annealing algorithm [28] employing speckle
statistics is described in [32] and optical generation of random number
arrays by photon counting image acquisition systems or clipped laser
speckle have also been recently described [33]-[36]. These photon counting
image acquisition systems have the advantage of being able to generate
normalized random numbers with any probability density function. A more
important advantage of optical generation of random number arrays however
is the ability to exploit the parallelism of optics to modify the simulated
annealing and the Boltzwaan wachine iormalism detailed above in order to
achieve significant improvement in speed. As stated earlier, with parallel
optical random number generation, a spatially and temporally uncorrelated
linear array of perculating light spots of suitable size can be generated
and imaged onto the photodetector array (PDA) of Fig. 1 directly such that
both the positive and negative photosites of the PDA are subjected
to random irradiance. This introduces a random (noise) component in ©; and
Ii{ of eq. (2) which can be viewed as stated earlier as bipolar noisy
threshold. The noisy threshold produces in turn a noisy component in the
energy in accordance to eq. (2). The magnitude of the noise components can
be controlled by varying the standard deviation of the random light
intensity array irradiating the PDA. The noisy thrashold produces
therefore random controlled perturbation or "shaking" of the energy
landscape of the net. This helps shake the net loose whenever it gets
trapped in a local energy minimum. The procedure can be viewed as
generating a controlled deformations or tremor in the energy landscape of

_ 1
j§1 wijsj)si = -3 E uss, (4)
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the net to prevent entrapment in a local energy minimum and ensure thereby
convergence to a state of global energy minimum. Both the random drawing
of neurons (more than one at a time is now possible) and the stochastic
state update of the net are now done in parallel at the same time. This
leads to significant acceleration of the simulated annealing process. In
the following, results of numerical simulations aimed at gaining insight in
the performance of the noisy threshold scheme are presented.

4. SIMULATION RESULTS

For the purposes of this simulation we form a fully interconnected
(single layer) neural net with random bipolar binary weights matrix with
diagonal elements set to zero. The number of neurons N is 16. The weights
are symmetrical. Figure 2 shows the density of states (energy histogram)
of the net, where we calculate the energies of all the possible
(216) configurations of the net. The Y (vertical) axis shows the number
of configurations (out of 216) with the same energy and their
corresponding energy energy represented by the X (horizontal) axis. The
low energy configurations correspond to states near the very left of the
curve, of which a good annealing scheme should find one. To avoid lengthy
simulation time, we do not in the following exhaust the simulation for all
possible configurations (216). Instead, we randomly select 50
configurations as the test sample space. The energy histogram of these 50
configurations is shown in Fig. 3. 1In Fig. 4 is shown the energy histogram
of the states to which the net converges when initiated with the 50
configurations of the test space. The histogram was obtained by initiating
the net with any one of the 50 states and followed by finding the final
state to which net net converges by iteratively applying the customary
neural net state update rule [7] namely,

‘lifu 0

i >

S, =
1 ' 0 if u; 0

(4)

which amounts to performing a steepest gradient descent search into local
minima of the net, then calculating the energy of the final state. The
plot means that there are Y number of initial states (out of the 50 config-
urations of the sample space) which converge (in the sense of the above
conventional steepest descent) to local minima with same energy X. We see
that a fair number of initial states end up trapped in local energy minima
at high energy state because the steepest gradient descent search method
involved is deterministic and does not have provisions for escaping from a
local minimum. This curve can serve as a reference to test the performance
of an annealing scheme's ability to escape from a local minimum and find
the global minimum. In Figs 5 and 6, we display the energy histograms of
the convergent states when different annealing schemes were used. In these
figures, each of the 50 configurations of test space ir used as input
vector for 100 times, and the statistics of the convergent states are
collected. The results employing the simulated annealing algorithm
[23],[24] with random drawing of neurons one neuron at a time, and
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stochastic update employing noise uniformly distributed in the range (-T,T)
are shown in Fig. 5. The annealing or cooling schedule used was: 96 @ 10,
160 @ 5, 96 @ 3, 96 @ 1, 96 @ .5, and 96 @ 0.01 where I @ T specifies the
number of iterations I at temperature T. Figure 6 shows the results
obtained with the noisy threshold scheme where the deterministic component
of the thresheld is taken to be zero and independent bipolar noise
components uniformly distributed in the (-T,T) range are added to the
thresholds every iteration. The probability of the i-th neuron switching
its state was taken to be inversely proportional to its activation
potential uj. The noise amplitude T was reduced gradually every

specified number of iterations to allow the net to find the states of
global energy minimum or one close to it. The following annealing schedule
was utilized: 10 @ 2.5, 10 € 1.5, 10 @ .5, and 10 @ .1. It is seen that
annealing with noisy threshold finds states of global energy minima equally
well as the conventional simulated annealing scheme. The number of
iterations involved is however considerably less: 40 as compared to 540 in
the conventional simulated annealing scheme. It is worth noting also that
the noisy threshold scheme does not require knowing the energy of the net
to apply the rule described in the preceeding section. This further
accelerates the gsearch for the global minimum and can markedly shorten
learning time [28].

Fig. 2. Density of states for 216
possible configurations.
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1 5. DISCUSSION

We have described an architecture for partitioning an opto-electronic
analog of a neural net to form a multilayered net that permits
self-organization and learning when computer controlled nonvolatile spatial
light modulators are utilized to realize the required plasticity. The
focus here is on stochastic learning as opposed to deterministic learning
because it can account for the role of noise in biological neural nets. We
also described opto-electronic architectures that can be used for fast
determination of the energy of the net and therefore can accelerate the
simulated annealing process involved in stochastic learning where "optical
random arrays” can also be used to accellerate the process further.
However, when parallel optical computing is employed, it is not necessary
to adhere to a serial simulated annealing algorithm. We have shown that
departure from the conventional simulated annealing algorithm through the
use of a noisy thresholding scheme promises to markedly accelerate
stochastic learning in opto-electronic implementation of multilayered
neural nets, make the procedure more biologically plausible, and make
stochastic learning practical.
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Bimodal Stochastic Optical Learning Machine
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Electrical Engineering Department
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Abstract

Self-organization and learning is an important attribute of neural nets that sets them
apart from other approaches to signal processing. The study of stochastic learning by
simulated annealing in the context of a Boltzmann machine is attractive because it
could shed light on the role of noise in biological neural nets and because it can lead
to artificial neural nets that can be switched between two distinct operating modes
depending on noise level in the network. At finite noise level (or temperature) the net
can be operated in a “soft” mode where learning can take place by automated synaptic
modifications. Once learning is completed the net is “hardened” (or frozen) and acts
as associative memory by reducing the noise level or temperature to zero. We present
the results of numerical and experimental study aimed at opto-electronic realization
of such networks. The results include: {a) fast arnealing by noisy thresholding which
demonstrates that the global energy minimum of a small analog test network can be
reached in a matter of a few tens of neuron time constants. (b) stochastic learning with
binary weights which paves the way for the use of fast binary and nonvolatile spatial
light modulators to realize synaptic modifications.

1 System Architecture

Optics and opto-electronic architectures and techniques can play an important role in
the study and implementation ot self-programming networks and in speeding-up the
execution of learning algorithms. Learning requires partitioning a net into layers with
a prescribed communication pattern among them. A method for partitioning an opto-
electronic analog of a neural net into input, output. and internal groups (layers) of
neurons with seiective communication pattern among neurons within each laver and
between layers that is capable of stochastic learning, by means of a simulated annealing
algorithm in the context of a Boltzmann machine formalism is described in Fig. 1(a)
The network, consisting of N neurons. is partitioned into three groups. Two groups. V;
and V;, represent visible or environmental units that can be used as input and output
units respectively. The third group H are hidden units. The partition is such that
N1+ N2 + N3 = .V where subscripts 1.2, and 3 on .V refer to the number of neurons
in the Vi, V; and H groups respectively. The interconnectivity matrix, designated
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here as wj;, is partitioned into nine submatrices, A, B. C, D, E. and F plus three
zero submatrices shown as blackened or opaque regions of the w;; mask. The LED
array represents the state of the neurons, assumed to be unipolar binary (LED on =
neurons firing, LED off = neurons not-firing). The w;; mask represents the strengths
of the interconnection between neurons. Light from the LEDs is smeared vertically
over the w;; mask with the aid of an anamorphic lens system (not shown in Fig.
1(a)) and light emerging from rows of the mask is focused with the aid of another
anamorphic lens system (also not shown) onto elements of the photodetector (PD)
array. Bipolar values of w;; can be realized in incoherent light by separating each row
of the w;; mask into two subrows and assigning positive values of w;‘; to one subrow and
negative values w;; to the other, then focusing light emerging from the two subrows
separately onto pairs of adjacent photosites connected in opposition in each of the V7.
V; and H segments of the PD array as described elsewhere [2]. Submatrix A. with
-VN1x.V; elements, provides the interconnection weights of units or neurons within group
V7. Submatrix B, with V,x.V; elements, provides the interconnection weights of units
within V2. Submatrices C (of .V1x.V; elements) and D (of .V3x.V; elements) provide
the interconnection weights between units of V; and H and similarly submatrices E
(of Vox.V3 elements) and F (of .Vax.V; elements) provide the interconnection weights
of units V; and H. Units in V] and V3 can not communicate with each other directly
because locations of their interconnectivity weights in the w;; matrix or mask are
blocked out (blackened lower left and top right portion of w;;). Similarly units within
H do not communicate with each other because locations of their interconnectivity
weights in the w;; mask are also blocked out (center blackened square of w,,). The
LED element 9 is of graded response. It can be viewed as representing the state of an
auxiliary neurown in the net that is always on to provide a threshold level to ail units
by contributing to the light focused onto only negative photosites of the PD array by
suitable modulation of pixels in the G column of the interconnectivity mask. This
method for introducing the threshold level is attractive as it allows for introducing
a fixed threshold to all neurons or an adaptive threshoid if desired. It can also be
employed to alter the energy landscape of the net adaptively in accordance %o the
behavior of other parameters of the net. Figure 1(b) shows the arrangement for rapid
determination of the net’s energy E for use in learning by simulated annealing. A
computer works as the system controller to calculates P, and P,']-, and also to control the
MOSLM which implements the interconnectivity matrix W. This architecture allows
stochastic learning by simulated annealing in the context of a Boltzmann machine. The
learning algorithm for Boltzmann machine can be summarized as follows:

1. Choose one mapping or associated pair that the net is required to learn. and
present it to the net. The associated pair consists of two unipolar binary vectors
one an input vector and the other an output vector.

2. Clamp the input vector to the V) neurons. and the corresponding output vector
to the V2 neurons.

3. Employ simulated annealing method in energy space to find low energy configu-
rations at the given V7 and V;. The final temperature in the cooling schedule is
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called Ty 2nd will be used later as an annealing parameter in Cross-Entropy or
G-space. During this step, random drawing and change of only the states of the
bidden neurons (H) takes place.

4. Repeat steps 2-3 V1 times for all associations the net is required to learn, and
collect co-occurrence statistics i.e. determine the probabilities ;; of the ith and
jth being in the same state i.e. both being on or off.

5. Unclamp the V; neurons and repeat steps 3-4 for all input vectors. and collect co-
occurrence statistics again i.e. determine the probabilities P;J- of the ith and jth
neurons being in the same state. During this step. random drawing and change
of both the states of the H and the V3 neurons takes place.

6. All weights in the net are modified by increasing the synaptic weight (1V),) be-
tween the ith and jth neurons by a small amount ¢ if P; - P,-'_.,- > 0. otherwise.
decreasing the weight by the same amount. Note this requires multivalued W,
or incremental variation of W;, that requires the use of graded response spatial
light modulators for realizing synaptic modifications in opto-electronic implemen-
tations.

. We call steps 1-6 a learning cycle. The learning cycle consists of two phases.
Phase one involves clamping the input and output units to the associated pairs.
Phase two involves clamping the input units to the input vector alone and letting
the output units free run with the hidden units. The learning cycle is repeated
again and again and is halted after P,; — P,I}» is close to zero for every ¢ and .

The learning procedure described above can be supported in the opto-electronic
hardware environment described previously.

2 Fast Annealing With Noisy Threshold

With the aid of an optical random number generation. a spatially and temporally
uncorrejated linear array of perculating light spots of suitable size and intensity range
can be generated and imaged onto the PD array of Fig. 1 directly such that both the
positive and negative photosites of the PD array are subjected to random irradiance.
This introduces a random (noise) component in the threshold. The noisy threshold
produces in turn a noisy component in the energy function of the net. The magnitude
of the noise components can be controlled by varying the light intensity array irradiating
the PD array. The noisy threshold produces therefore random controlled perturbation
or “shaking” of the energy landscape of the net. This helps shake the net loose whenever
it gets trapped in a local energy minimum. The procedure can be viewed as generating
a controlled gradually decreasing deformations or tremors in the energy landscape of
the net that prevents entrapment in a local energy minimum and helps the net settle
into the global minimum energy <tate or one close to it. Both the random drawing of
neurons (more than one at a time is now possible) and the stochastic state update of
the net are now done in paralle] at t*» same time. This leads to significant acceleration
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of the simulated annealing process. Electronic control of the random light intensity
enables realizing any annealing profile. We had presented the results of numerical
study elsewhere [1]. In the following, results of an experimental study aimed at gaining
insight in the performance of the noisy threshold scheme are presented.

3 Experimental Results

An annealing experiment based on the noisy threshoid algorithm in an opto-electronic
neural net is reported. A television screen tuned to an empty channel where no TV
station operates is used as the spatio-temporal optical noise source. We use a lens
to project the optical noise pattern (snow pattern) onto the photodetector array of an
opto-electronic neural net consisting of 16 unipolar binary neurons of the type described
elsewhere [2]. The connectivity matrix of the network was the same random ternary
matrix utilized in earlier work {1]. The brightness of the TV screen is controlled by
the D/A output of a MASSCOMP computer, and the convergent state is monitored by
the A/D input of the same computer. A photograph of the experimental arrangement
is shown in Figure 2. We investigated four types of cooling profiles: linear, concave.
convex, and stair-case illustrated in Figure 3. For each cooling profile, we investigate 5
annealing time intervals: 100, 200, 300, 1000, and 2000 ms. For each cooling profile and
annealing time interval, we do the annealing 100 times to collect sufficient statistics.
and find the probability that the system converges to its global minimal energy state.
The experimental results obtained show that the setup can find the global energy
minimum of an artificial neural net of 16 neurons in 2000 ms which corresponds to
32 time constants of the neurons in the test network. A net of neurons with response
time of 1 u sec would anneal therefore in few tens of microseconds and this is expected
to be independent of the number of neurons in the net as long as parallel injection of
noise in the network is implemented. The cooling profile had no observabie effect on
this result. The probabilities of convergence to a global minimum as function of the
annealing duration for different annealing profiles are shown in the table 1.

4 Stochastic Learning With Binary Weights

The Boltzmann machine [earning algorithm described earlier employs graded weights.
However, from practical viewpoint, learning in artificial neural nets can be simplified
considerably if binary weights can be used. This would pave the way to using fast
nonvolatile binary spatial light modulators (SLMs) such as Magneto-Optic SLM and
Ferroelectric liquid crystal SLM. However, a Boltzmanu machine basically is an adap-
tive system. If the step size of adaptive changes is too large and the sensitivity of
system response to the error signal is high, the machine will generally become unsta-
ble. Since a traditional Boltzmann machine has a high sensitivity in response to error
signal, i.e., it responds to the error signal (P;; - P"]) to modify synaptic weights even
when the error signal is very small, small weight variations are required to prevent
the system from becoming unstable. However, in a binary weight net (W, = 1. -1}
the step size of adaptive change is large and fixed (-2 or 2). In order to prevent the
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system from becoming unstable, we increase the inertia of weights i.e. weights do not
change when small value of P;; — P;]- occurs. As a result, the learning procedure of the
Boltzmann machine in a binary weight net would be identical to the procedure of the
graded weights net stated in the system architecture section, except step 6 which is
modified as follows: If P;; — P, > M, set W;; = 1;if P ~ P;J- < -M.set W;; = -1
otherwise, no change, where M € [0,1] is a fixed constant.

The goal of the Boltzmann machine is to minimize the Cross-Entropy G by means
of modifying the weights of the net in a certain order. The G space is an information
theoretic measure of the distance between the probability distributions when an envi-
ronmental input is present in the net and when it is free running with no environmental

input applied, and is given by

P*(Vs)
P=(Va)
where P*(V,) is the probability of the visible units being in the a state when the visible
units are subjected to the environmental input. Namely, P¥(V, ) represents the desired
or specified probability for the a state. P~(V,) is the corresponding probability when
the net is free-running. Namely, P~(V,) represents the actual probability generated
from the net for the a state. P~(V,) depends on the weights W;;, and so G can be
altered by changing W;;. Since, in general. there are local minima in G space, gradient
descent search will find a local minimum instead of the global minimum. In order to
reach the global minimum in G space. introduction of noise in G space is required.
However,-if the noise level is too large, the network can not generate the specified or
desired environmental distribution. A systematic way for adding noise in G space. i.e.
an annealing scheme in G space, has not yet been studied in detail. Here we propose
the use of the final temperature Ty of the simulated annealing schedule used in the
energy space £ as the annealing parameter in G space, since P~ (V) is function of Tp.
In the first few learning cycles. we use high values of T5. This will provide high level
of noise in G space. The value of Tj is decreased gradually along with the number of
learning cycles. Accordingly, a simulated annealing process in G space is accompiished
by decreasing the final temperature T in a similar way to the simulated annealing
process in energy space which is accomplished by decreasing annealing temperature T.
Note that an annealing schedule with high value of Ty is equivalent to a short time
interval annealing schedule in E space. i.e.. both cases can generate high level of noise
in G space, and vice versa. Accordingly, annealing time interval in £ space can also be
used as an annealing parameter in G space. As a result. a simulated annealing process
in G space can also be accomplished by gradually increasing the annealing time interval
in E space along with the number of learning cycles. Results of computer simulations
of stochastic learning by simulated annealing in a Boltzmann machine emploving both
graded and binary weights are presented in the next section.

G=5 P*Vi)ln (1)

5 Simulation Results

In these simulations we use noisy threshold (N-T) annealing scheme (1] and use the
annealing time interval in E space as an annealing parameter in G space. All the simu-
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lations learn to solve a 4-2-4 encoder problem (3] in the context of Boltzmann machine
formalism i.e. this consists of having a three layered net, of the kind described in the
architecture section, learn to form its own internal representations of the associations
presented to it. For all simulations, the net reaches equilibrium 100 times (25 times for
each input vector) for collecting the statistics of P;; during the input and output clamp-
ing phase. The situation is the same for collecting the statistics of P,-'j. All annealing
schedules are stated in the corresponding Figures in the notation of J@T explained
earlier [1]. The noise we used is binary noise whose amplitude is either T or —T and
is decreased gradually in time and terminated at at Tp. Figure 4 shows the results
of the linear weight learning scheme, and Figures 5 shows the results of the binary
weight learning scheme. All Figures show the results for 12 runs. The parameter W
we used is 0.1. Ounly two annealing schedules in E space are used for the annealing
in G space. During the first half of the total number of learning cycles the short time
interval annealing schedule is employed, and during the later half of the learning cycles
the long time interval annealing schedule is employed. These results show the viability
of the annealing scheme in G space, and also show the viability of the binary weight
stochastic learning scheme.

6 Conclusions

We have described an architecture for partitioning an opto-electronic analog of a neural
net to form a multilayered net that permits self-organization and learning when com-
puter controlled nonvolatile spatial light modulators are utilized to realize the required
plasticity. The focus here is on stochastic learning as opposed to deterministic learning
because it may provide insight in the role of noise in biological neural nets. We also
described opto-electronic architectures that can be used for fast determination of the
energy of the net if such information is needed and for adaptive deterministic deforma-
tion of the net’s energy landscape to control its behavior. We show that departure from
the conventional simulated annealing algorithm through the use of noisy thresholding
in opto-electronic . “hemes promises to markedly accelerate the annealing process. and
make stochastic learning practical. Employing the noisy thresholding scheme a small
opto-electronic neural net (of 16 neurons) was found to reach a global energy minimum
or one close to it in about 32 neuron time constants. We also show that binary weight
learning algorithm can be used in the context of a modified Boltzmann machine. This
paves the way to the use of nonvolatile binary spatial light modulators to realize the
required plasticity in such stochastic learning nets. Such nets. having learned their
environmental inputs can be “frozen” for use as associative memories of the entities
learned by merely removing injected noise from the net. Noise injection for annealing
returns the nets to a “soft” mode for learning new environmental inputs.
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Fig. 2. Pictorial view of opto-electronic neural
net of 16 unipolar binary neurons with random
ternary weights used to verify fast annealing

by noisy threshoolding.
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Profile y a
: ave conver ste
\ linear concave P

100ms
200ms
300ms
1000ms
2000ms

0.48 0.46
0.62 0.56
0.78 0.73
0.83 0.86
0.97 0.96

0.50
0.68
0.77
0.84
0.96

0.45
0.64
0.79
0.88
0.98

Table | The probabiiities of convergence 0 a giobai
munimum as function of the anneaiing duration

for different aanealing profiles.
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